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Abstract
Self-supervised learning (SSL) has proven vital for advanc-
ing research in natural language processing (NLP) and com-
puter vision (CV). The paradigm pretrains a shared model on
large volumes of unlabeled data and achieves state-of-the-art
(SOTA) for various tasks with minimal adaptation. However,
the speech processing community lacks a similar setup to sys-
tematically explore the paradigm. To bridge this gap, we in-
troduce Speech processing Universal PERformance Benchmark
(SUPERB). SUPERB is a leaderboard to benchmark the perfor-
mance of a shared model across a wide range of speech pro-
cessing tasks with minimal architecture changes and labeled
data. Among multiple usages of the shared model, we espe-
cially focus on extracting the representation learned from SSL
for its preferable re-usability. We present a simple framework
to solve SUPERB tasks by learning task-specialized lightweight
prediction heads on top of the frozen shared model. Our re-
sults demonstrate that the framework is promising as SSL rep-
resentations show competitive generalizability and accessibility
across SUPERB tasks. We release SUPERB as a challenge with
a leaderboard1 and a benchmark toolkit2 to fuel the research in
representation learning and general speech processing.
Index Terms: Speech, Self-Supervised Learning, Representa-
tion Learning, Model Generalization, Benchmark, Evaluation

1. Introduction
Starting from ELMo [1] and BERT [2] in NLP, the effectiveness
of SSL is evident in various domains [3, 4]. It is becoming a
new principle to solve problems by pretraining a shared model
with self-supervision tasks on a large amount of unlabeled data

∗Equal contribution; sorted alphabetically
†Work done independently outside Amazon employment

1https://superbbenchmark.org: SUPERB welcomes pretrained
model submissions. The framework described in this paper will be used
in the constrained track, in which the pretrained models are frozen, and
the prediction heads for downstream tasks are the same for all pretrained
models. We will open an unconstrained track for submissions with any
approach, including finetuning pretrained models and other non-SSL
approaches in the future.

2https://github.com/s3prl/s3prl: All the materials are open-sourced
and reproducible in s3prl toolkit which supports to benchmark most
existing and customized pretrained models.

to encode general-purpose knowledge. The model can then be
specialized in various downstream tasks through concatenating
prediction layers and simple finetuning. This approach achieves
SOTA performance in many applications.

SSL is desirable for its outstanding performance as well
as generalizability and re-usability across tasks to democratize
deep learning to various application scenarios. Developing deep
neural networks is expensive nowadays in terms of data collec-
tion, modeling, computing power, and training time. Repeat-
ing the same process for each specific use case is time- and
cost- prohibitive for both academic and industrial researchers.
SSL can significantly speed up and lower the entry barrier for
model development, as the pretrained model is powerful to en-
code generally applicable knowledge, and only requires low
resources to extract task-specific knowledge for different use
cases. Well-established benchmark, such as GLUE [5] in NLP
and VISSL [6] in CV, is essential to evaluate pretrained models’
generalizability and re-usability across a wide range of tasks.

SSL has been explored in speech, including pretraining
with generative loss [7, 8, 9, 10], discriminative loss [11, 12,
13, 14], or multi-task [15, 16]. Researchers have investigated
these SSL models’ capabilities on tasks including phoneme
classification [11, 7], speaker identification [7, 8], speaker ver-
ification [17], emotion recognition [15], ASR [9, 12, 10, 16],
speech translation [7], spoken language understanding [18],
voice conversion [19] and TTS [20]. While these works showed
promising results of SSL on various speech processing tasks,
unlike CV or NLP areas, they were investigated with differ-
ent datasets and experimental setups. Absence of a shared
benchmark makes it hard to compare and draw insights across
the techniques. Furthermore, existing works explored a lim-
ited number of tasks or require heavyweight downstream train-
ing [9, 12, 14], blurring the generalizability and re-usability of
SSL models across tasks. Both factors limit the impact of SSL
on speech processing in research and industry.

We introduce Speech processing Universal PERformance
Benchmark (SUPERB) to address the problem. SUPERB aims
to 360-degree examine models’ capability and collects various
tasks with limited labeled data from speech communities to
align with common research interests. There are existing bench-
marks proposed to evaluate representations extracted from SSL
pretrained models [21, 22]. [21] focuses on representations’
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quality without any downstream training, and [22] excludes the
content recognition tasks like ASR. Compared to existing ef-
forts, SUPERB targets at the direct usability of pretrained mod-
els on various popular tasks through any usage3. As finetuning
pretrained models typically requires huge resources and hinders
the re-usability, in this paper, we focus on investigating a simple
framework solving all SUPERB tasks with a frozen, shared pre-
trained model, and lightweight prediction heads finetuned for
each task. Our results show that the framework yields compet-
itive performance compared to traditional supervised pipelines
by leveraging powerful SSL representations, and they outper-
form log mel filterbank (FBANK), a widely used feature in
all speech domains, by a large margin. Both results demon-
strate the possibility of developing powerful, generalizable,
and reusable pretrained models to democratize the advance in
speech processing. We invite researchers to participate and sub-
mit new results to drive the research frontier together1.

2. Speech processing Universal
PERformance Benchmark

We establish and release Speech processing Universal PERfor-
mance Benchmark (SUPERB), aiming to offer the community
a standard and comprehensive testbed for evaluating the gen-
eralizability of pretrained models on various tasks covering all
aspects of speech. General speech processing can be catego-
rized into discriminative and generative tasks. The former dis-
criminates from continuous speech into discrete decisions like
a match in query-by-example, words in ASR, and classes in
speaker identification; the latter generates continuous speech
from any input like TTS, voice conversion, and source separa-
tion. We focus on the former for the initial release of SUPERB4.
Tasks are designed with the following principles: (1) conven-
tional evaluation protocols from speech communities, (2) pub-
licly available datasets for everyone to participate, (3) limited
labeled data to effectively benchmark the generalizability of
models. Ten tasks are presented here to investigate four aspects
of speech: content, speaker, semantics, and paralinguistics.

2.1. Content

Four tasks are collected from ASR and Spoken Term Detection
communities. The former aims to transcribe speech into text
content; the latter is to detect the spoken content with minimal
effort even without transcribing.

Phoneme Recognition, PR transcribes an utterance into
the smallest content units. We include alignment modeling
in the PR task to avoid the potential inaccurate forced align-
ment. LibriSpeech [23] train-clean-100/dev-clean/test-clean
subsets are adopted in SUPERB for training/validation/testing.
Phoneme transcriptions are obtained from the LibriSpeech offi-
cial g2p-model-5 and the conversion script in Kaldi librispeech
s5 recipe. The evaluation metric is phone error rate (PER).

Automatic Speech Recognition, ASR transcribes utter-
ances into words. While PR analyzes the improvement in mod-
eling phonetics, ASR reflects the significance of the improve-
ment in a real-world scenario. LibriSpeech train-clean-100/dev-
clean/test-clean subsets are used for training/validation/testing.

3Finetuning pretrained models or using them as representation ex-
tractors are two common usages.

4SUPERB is a long-term maintained and continuously developing
project. More pretrained models will be included in the leaderboard,
and we plan to release generative tasks as the second challenge, like
voice conversion and source separation.

The evaluation metric is word error rate (WER).
Keyword Spotting, KS detects preregistered keywords by

classifying utterances into a predefined set of words. The task is
usually performed on-device for the fast response time. Thus,
accuracy, model size, and inference time are all crucial. We
choose the widely used Speech Commands dataset v1.0 [24]
for the task. The dataset consists of ten classes of keywords,
a class for silence, and an unknown class to include the false
positive. The evaluation metric is accuracy (ACC).

Query by Example Spoken Term Detection, QbE detects
a spoken term (query) in an audio database (documents) by bi-
nary discriminating a given pair of query and document into a
match or not. The English subset in QUESST 2014 [25] chal-
lenge is adopted since we focus on investigating English as the
first step. The evaluation metric is maximum term weighted
value (MTWV) which balances misses and false alarms.

2.2. Speaker

Three tasks are collected to analyze speaker modeling.
Speaker Identification, SID classifies each utterance for

its speaker identity as a multi-class classification, where speak-
ers are in the same predefined set for both training and testing.
The widely used VoxCeleb1 [26] is adopted, and the evaluation
metric is accuracy (ACC).

Automatic Speaker Verification, ASV verifies whether
the speakers of a pair of utterances match as a binary classi-
fication, and speakers in the testing set may not appear in the
training set. Thus, ASV is more challenging than SID. Vox-
Celeb1 [26] is used without VoxCeleb2 training data and noise
augmentation. The evaluation metric is equal error rate (EER).

Speaker Diarization, SD predicts who is speaking when
for each timestamp, and multiple speakers can speak simulta-
neously. The model has to encode rich speaker characteristics
for each frame and should be able to represent mixtures of sig-
nals. LibriMix [27] is adopted where LibriSpeech train-clean-
100/dev-clean/test-clean are used to generate mixtures for train-
ing/validation/testing. We focus on the two-speaker scenario as
the first step. The time-coded speaker labels were generated us-
ing alignments from Kaldi LibriSpeech ASR model. The eval-
uation metric is diarization error rate (DER).

2.3. Semantics

Two tasks are collected from Spoken Language Understanding
(SLU) community. While most works for these tasks are done
in two stages: transcribing speech into text and predicting se-
mantics on transcribed text, we focus on inferring high-level
semantics directly from raw audio in an end-to-end fashion.

Intent Classification, IC classifies utterances into prede-
fined classes to determine the intent of speakers. We use the
Fluent Speech Commands [28] dataset, where each utterance is
tagged with three intent labels: action, object, and location. The
evaluation metric is accuracy (ACC).

Slot Filling, SF predicts a sequence of semantic slot-types
from an utterance, like a slot-type FromLocation for a spoken
word Taipei, which is known as a slot-value. Both slot-types
and slot-values are essential for an SLU system to function [18].
The evaluation metrics thus include slot-type F1 score and slot-
value CER [29]. Audio SNIPS [18] is adopted, which synthe-
sized multi-speaker utterances for SNIPS [30]. Following the
standard split in SNIPS, US-accent speakers are further selected
for training, and others are for validation/testing.
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2.4. Paralinguistics

Emotion Recognition, ER predicts an emotion class for each
utterance. The most widely used ER dataset IEMOCAP [31]
is adopted, and we follow the conventional evaluation proto-
col: we drop the unbalance emotion classes to leave the final
four classes (neutral, happy, sad, angry) with a similar amount
of data points and cross-validates on five folds of the standard
splits. The evaluation metric is accuracy (ACC).

3. Framework: Universal Representation
Our framework aims to explore how simple and general the so-
lution can be. Thus, we freeze the parameters of pretrained
models across tasks and extract fixed representations to be fed
into each task-specialized prediction head (small downstream
model). Compared to previous setups in speech representation
learning [9, 12, 13], the framework puts an explicit constraint
on downstream models to be as lightweight as possible for all
tasks, as their parameter size and required training resources
are also crucial for the framework to be simple and re-usable
in various use cases. With the above principles, the pretrained
model solving all SUPERB tasks in this framework would be a
universal representation encoder. In the following, we first de-
scribe the SSL pretrained models leveraged and then introduce
the downstream models and training policies.

3.1. Self-supervised pretrained models

SSL models explored in this paper are summarized in Ta-
ble 1 and categorized into three learning approaches: generative
modeling, discriminative modeling, and multi-task learning.

Generative modeling has long been a prevailing approach
to learn speech representation [7, 8, 10]. Instances of genera-
tive modeling investigated here include APC [7], VQ-APC [32],
Mockingjay [8], TERA [9], and NPC [33]. APC adopts the lan-
guage model-like pretraining scheme on a sequence of acous-
tic features (FBANK) with unidirectional RNN and generates
future frames conditioning on past frames. VQ-APC further
applies vector-quantization (VQ) layers onto APC’s representa-
tion to make it compact and low bit-rate. Mockingjay adopts
the BERT-like pretraining on Transformer encoders by masking
the input acoustic features in time axis and re-generating the
masked parts. TERA extends Mockingjay to further mask the
frequency bins. NPC improves the inference speed upon APC
by replacing RNN with CNN and changing the future genera-
tion to masked reconstruction as Mockingjay.

Discriminative modeling for SSL studied here include
CPC [11, 34], wav2vec [12], vq-wav2vec [13], wav2vec
2.0 [14] and HuBERT [35]. CPC discriminates the corre-
lated positive samples from negative samples with contrastive
InfoNCE loss, which maximizes the mutual information be-
tween raw data and representations. Modified CPC [34] and
wav2vec [12] proposed several architecture changes to im-
prove CPC. vq-wav2vec introduces a VQ module to wav2vec.
The module discretizes speech into a sequence of tokens af-
ter InfoNCE pretraining. Tokens are used as pseudo-text to
train a BERT as did in NLP for contextualized representa-
tions. wav2vec 2.0 merges the pipeline of vq-wav2vec into
one end-to-end training scheme by applying time masking in
the latent space and replacing BERT’s token prediction with In-
foNCE’s negative sampling to handle the intractable normaliza-
tion on continuous speech. Motivated by DeepCluster [36], Hu-
BERT [35] enables BERT’s token prediction via off-line clus-
tering on representations. The clustered labels at the masked

locations are then predicted.
Multi-task learning is applied in PASE+ [16], where lots

of pretraining objectives are adopted: waveform generation,
prosody features regression, contrastive InfoMax objectives,
and more. Multiple contaminations are also applied to input
speech like reverberation and additive noise.

3.2. Downstream models and policies

We design our framework to keep the downstream models and
their finetuning simple, while ensuring the performance across
pretrained models is comparable and the best model in each task
is competitive. Since the last-layer representation is not always
the best, the framework collects multiple hidden states from the
pretrained model and weighted-sum them as the final represen-
tation. For a fair comparison, we also limit the space for down-
stream hyper-parameters tuning5. Downstream models and al-
gorithms are summarized in the following and will be released
in detail as a part of the challenge policy.

PR, KS, SID, IC, ER are simple tasks that are solvable with
linear downstream models. Hence, we use a frame-wise linear
transformation for PR with CTC loss; mean-pooling followed
by a linear transformation with cross-entropy loss for utterance-
level tasks (KS, SID, IC, and ER). These five tasks also serve
as the direct indication of representations’ quality following the
conventional linear evaluation protocol.

For ASR, a vanilla 2-layer 1024-unit BLSTM is adopted
and optimized by CTC loss on characters. The trained model
is decoded with LibriSpeech official 4-gram LM powered by
KenLM [37] and flashlight [38] toolkit. We mostly follow
the system proposed by GTTS-EHU for QUESST at Medi-
aEval 2014 [39] for QbE but replace the conventional super-
vised phoneme posteriorgram (PPG) with SSL representations.
We run Dynamic Time Warping[40] on all hidden states sepa-
rately with standard distance functions and obtain a score for
each query-document pair. The best distance function / hid-
den state pair is reported. Regarding SF, slot-type labels are
represented as special tokens to wrap the slot-values in tran-
scriptions. SF is then re-formulated as an ASR problem. The
finetuning scheme is the same as in our ASR task, except for
the pre-processing to encode slot-types into transcriptions and
post-processing to decode slot-types and slot-values from hy-
potheses. As for ASV, we adopt the well-known x-vector [41]
as the downstream model and change Softmax loss to AMSoft-
max loss with the same hyper-parameters as [26]. The simple
cosine-similarity backend is used to produce pairwise match-
ing scores. We employ the end-to-end training scheme with
permutation-invariant training (PIT) loss [42] to SD, instead
of using clustering-based methods. We leverage a single-layer
512-unit LSTM for the downstream model.

4. Experiment
To extract representations from pretrained models, we follow
the official release as summarized in Table 1 for model def-
initions, pretrained weights, and extraction pipelines if not
mentioning specifically. Some noteworthy details are: (1)
NPC repository is used to pretrain APC and VQ-APC as it

5We search for the best learning rate across 1e-1 to 1e-7 in log-scale
for each combination of SSL representation and the downstream tasks.
More details about the allowed hyper-parameters tuning will be avail-
able as we announce the challenge, but there will not be many hyper-
parameters to keep tuning simple.
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Table 1: Details of investigated SSL representations. LibriSpeech and LibriLight are denoted as LS and LL, respectively. For the
pretraining methods, we abbreviate ”vector quantization” as VQ, ”future” as F, ”masked” as M, ”generation” as G, ”contrastive
discrimination” as C, and ”token prediction/classification” as P. Parameters for both pretraining and inference are counted.

Method Network #Params Stride Input Corpus Pretraining Official Github
FBANK - 0 10ms waveform - - -
PASE+ [16] SincNet, 7-Conv, 1-QRNN 7.83M 10ms waveform LS 50 hr multi-task santi-pdp / pase
APC [7] 3-GRU 4.11M 10ms FBANK LS 360 hr F-G iamyuanchung / APC
VQ-APC [32] 3-GRU 4.63M 10ms FBANK LS 360 hr F-G + VQ iamyuanchung / VQ-APC
NPC [33] 4-Conv, 4-Masked Conv 19.38M 10ms FBANK LS 360 hr M-G + VQ Alexander-H-Liu / NPC
Mockingjay [8] 12-Trans 85.12M 10ms FBANK LS 360 hr time M-G s3prl / s3prl
TERA [9] 3-Trans 21.33M 10ms FBANK LS 960 hr time/freq M-G s3prl / s3prl
modified CPC [34] 5-Conv, 1-LSTM 1.84M 10ms waveform LL 60k hr F-C facebookresearch / CPC audio
wav2vec [12] 19-Conv 32.54M 10ms waveform LS 960 hr F-C pytorch / fairseq
vq-wav2vec [13] 20-Conv 34.15M 10ms waveform LS 960 hr F-C + VQ pytorch / fairseq
wav2vec 2.0 Base [14] 7-Conv 12-Trans 95.04M 20ms waveform LS 960 hr M-C + VQ pytorch / fairseq
wav2vec 2.0 Large [14] 7-Conv 24-Trans 317.38M 20ms waveform LL 60k hr M-C + VQ pytorch / fairseq
HuBERT Base [35] 7-Conv 12-Trans 94.68M 20ms waveform LS 960 hr M-P + VQ pytorch / fairseq
HuBERT Large [35] 7-Conv 24-Trans 316.61M 20ms waveform LL 60k hr M-P + VQ pytorch / fairseq

Table 2: Evaluating various SSL representations on various downstream tasks. The numbers are collected with public-available
checkpoints or codes, and we welcome researchers to re-submit the results to our online leaderboard.

PR KS IC SID ER ASR (WER) QbE SF ASV SD
PER ↓ Acc ↑ Acc ↑ Acc ↑ Acc ↑ w/o ↓ w/ LM ↓ MTWV ↑ F1 ↑ CER ↓ EER ↓ DER ↓

FBANK 82.01 8.63 9.10 8.5E-4 35.39 23.18 15.21 0.0058 69.64 52.94 9.56 10.05
PASE+ [16] 58.87 82.54 29.82 37.99 57.86 25.11 16.62 0.0072 62.14 60.17 11.61 8.68
APC [7] 41.98 91.01 74.69 60.42 59.33 21.28 14.74 0.0310 70.46 50.89 8.56 10.53
VQ-APC [32] 41.08 91.11 74.48 60.15 59.66 21.20 15.21 0.0251 68.53 52.91 8.72 10.45
NPC [33] 43.81 88.96 69.44 55.92 59.08 20.20 13.91 0.0246 72.79 48.44 9.4 9.34
Mockingjay [8] 70.19 83.67 34.33 32.29 50.28 22.82 15.48 6.6E-04 61.59 58.89 11.66 10.54
TERA [9] 49.17 89.48 58.42 57.57 56.27 18.17 12.16 0.0013 67.50 54.17 15.89 9.96
modified CPC [34] 42.54 91.88 64.09 39.63 60.96 20.18 13.53 0.0326 71.19 49.91 12.86 10.38
wav2vec [12] 31.58 95.59 84.92 56.56 59.79 15.86 11.00 0.0485 76.37 43.71 7.99 9.9
vq-wav2vec [13] 33.48 93.38 85.68 38.80 58.24 17.71 12.80 0.0410 77.68 41.54 10.38 9.93
wav2vec 2.0 Base [14] 5.74 96.23 92.35 75.18 63.43 6.43 4.79 0.0233 88.30 24.77 6.02 6.08
wav2vec 2.0 Large [14] 4.75 96.66 95.28 86.14 65.64 3.75 3.10 0.0489 87.11 27.31 5.65 5.62
HuBERT Base [35] 5.41 96.30 98.34 81.42 64.92 6.42 4.79 0.0736 88.53 25.20 5.11 5.88
HuBERT Large [35] 3.53 95.29 98.76 90.33 67.62 3.62 2.94 0.0353 89.81 21.76 5.98 5.75

is more flexible6. (2) For vq-wav2vec, we do not propagate
through BERT since its BERT implementation limits the utter-
ance length which is not long enough for some tasks.

We present the results in Table 2. For the tasks using linear
models, FBANK cannot work on any task, while SSL represen-
tations all perform well to some degree with different special-
izations. It is a surprise that wav2vec 2.0 and HuBERT con-
quers PR and IC with just linear models and outperforms others
by a large margin. Their results on SID and ER are also highly
competitive. FBANK achieves competitive performance when
allowing non-linear downstream models in ASR, SF, ASV, and
SD, and yields better performance than some SSL represen-
tations. We also observe that the ranking on PR aligns with
ASR weakly, while a significant improvement on phonetics still
transfers to ASR, like wav2vec, wav2vec 2.0, and HuBERT.
Furthermore, wav2vec 2.0 and HuBERT demonstrate that it be-
comes much easier than before to train an ASR system by lever-
aging powerful SSL representations. HuBERT ranks the top one
in QbE with MTWV 0.074. The prevailing feature for QbE is
PPG which we implemented with TIMIT due to the current fo-
cus on English, and the result of TIMIT PPG is 0.052 in MTWV,
suggesting that HuBERT turns out to be a very competitive rep-

6It is preferable for its on-the-fly FBANK extraction to enable test-
ing representations on more corpora. Its APC implementation is mostly
the same as the official but with CMVN on FBANK. Its VQ-APC is an
improved version as stated in the official repository.

resentation for QbE. As for SF, we can also observe a significant
improvement from wav2vec 2.0 and HuBERT over all other
representations. The CER in SF is generally high compared
to ASR as many slot-values are named entities. The results in
ASV and SD show that many SSL representations are worse
than FBANK when it comes to real-world speaker problems
beyond SID, while HuBERT improves upon popular FBANK
from 9.56 to 5.10 without additional VoxCeleb2 or augmenta-
tion. Although we find it non-trivial for SSL representations
to generalize to all SUPERB tasks, wav2vec 2.0 and HuBERT
achieve highly competitive performance with only lightweight
prediction heads trainable, compared to traditional supervised
techniques. The experiment results exhibit the efficacy of de-
veloping a more generalizable and re-usable pretrained model.

5. Conclusion

We present SUPERB, a challenge to generally benchmark the
capability of SSL pretrained models on speech processing. We
demonstrate a simple framework to solve all SUPERB tasks
which leverages a frozen, shared pretrained model and achieves
competitive performance with minimal architecture changes
and downstream finetuning. We have open-sourced the eval-
uation toolkit2 and will release the detailed challenge policy on
the leaderboard website1. We welcome the community to par-
ticipate and drive the research frontier.
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