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ABSTRACT

In this paper, we explore the use of a factorized hierarchi-
cal variational autoencoder (FHVAE) model to learn an unsu-
pervised latent representation for dialect identification (DID).
An FHVAE can learn a latent space that separates the more
static attributes within an utterance from the more dynamic at-
tributes by encoding them into two different sets of latent vari-
ables. Useful factors for dialect identification, such as pho-
netic or linguistic content, are encoded by a segmental la-
tent variable, while irrelevant factors that are relatively con-
stant within a sequence, such as a channel or a speaker in-
formation, are encoded by a sequential latent variable. The
disentanglement property makes the segmental latent vari-
able less susceptible to channel and speaker variation, and
thus reduces degradation from channel domain mismatch. We
demonstrate that on fully-supervised DID tasks, an end-to-
end model trained on the features extracted from the FH-
VAE model achieves the best performance, compared to the
same model trained on conventional acoustic features and an
i-vector based system. Moreover, we also show that the pro-
posed approach can leverage a large amount of unlabeled data
for FHVAE training to learn domain-invariant features for
DID, and significantly improve the performance in a low-
resource condition, where the labels for the in-domain data
are not available.
Index Terms: language recognition, dialect identification,
variational autoencoder, unsupervised learning

1. INTRODUCTION

Over the last few years, combinations of i-vectors and Deep
Neural Networks (DNNs) [1, 2, 3] have achieved state-of-the-
art results for speaker recognition and language identifica-
tion (LID). DNN-based end-to-end systems [4, 5, 6, 7] have
recently obtained comparable or slightly better performance
on these tasks. In comparison to LID, Dialect Identification
(DID) is a relatively unexplored task because DID is often
regarded as a pecial case of LID. However, DID is, in fact,
a much more challenging task compared to LID, due to the

high similarity between dialects [8, 9, 10, 11].

In [12], the authors investigated an end-to-end approach
to a DID task using an Arabic dialect dataset. The authors
applied a Convolutional Neural Network (CNN) and con-
ducted extensive experiments on comparing the use of differ-
ent acoustic features as well as data augmentation methods,
which demonstrates the importance of feature selection and
the effectiveness of increasing the amount of data. However,
such methods suffer from severe performance degradation
under domain mismatch condition, where training and testing
data are drawn from different domains. Unfortunately, this is
not a rare condition due to the scarcity of such datasets. Thus,
learning a better speech representation that is domain invari-
ant becomes essential for DID. In previous studies, domain
mismatch was mainly addressed in the context of speaker
recognition[13, 14, 15, 16, 17]. Among them, Inter Dataset
Variability Compensation (IDVC) is a simple but powerful
approach when in-domain data are presented but unlabeled.
We will also investigate this approach on dialect identifica-
tion. Another approach that can be applied to this condition
was studied by Zhang and Hansen [18, 19]. They presented
general Autoencoder approach and unsupervised bottleneck
feature (uBNF) extraction approach to language/dialect iden-
tification task. Because both approaches do not need ground
truth label, they use a big amount of unlabeled data to com-
pensate domain mismatches. They concluded uBNF achieved
the best performance on the tasks. We conducted uBNF
extraction on our experimental condition for performance
comparison.

In this paper, we present unsupervised representation
learning of dialectal speech using a Factorized Hierarchi-
cal Variational Autoencoder (FHVAE) [20]. An FHVAE is
a variant of variational autoencoders (VAEs) [21], which
models a generative process of sequential data with a hierar-
chical graphical model, and defines a corresponding inference
model for variational inference. Similar to VAEs, an FHVAE
is trained to maximize a lower bound of the marginal like-
lihood, and hence does not require any supervision, which
enables utilization of an unlabeled in-domain dataset for rep-
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resentation learning. In particular, such a model can represent
static and dynamic generating factors within an utterance with
a latent sequence variable and latent segment variable respec-
tively. As shown in [20], when an FHVAE model is trained
on speech data, channel and speaker-related information will
be encoded in the latent sequence variable, while language
related information like accent, tone, rhythm are encoded in
the latent segment variable. Therefore, if we use the latent
segment variable as a new feature for dialect identification,
the system could be more robust to a domain and speaker
variability. We incorporated this latent segment variable into
our end-to-end dialect identification system.

We conducted experiments on two different conditions
where labels of in-domain data are only available in one set-
ting and the other is not. I-vector and end-to-end systems
trained on traditional acoustic features also served as a base-
line result. The results indicate that using the latent segment
representation from the FHVAE model to train an end-to-end
DID system outperforms all other baselines and suffers less
degradation when a labeled in-domain dataset is not available.

2. DIALECT/LANGUAGE IDENTIFICATION
SYSTEM

2.1. I-vectors and Bottleneck Features

The i-vector has been regarded as the state-of-the-art repre-
sentation for speaker and language identification, especially
when combined with a DNN for i-vector extraction. The most
successful approach uses a DNN to generate bottleneck (BN)
features from an acoustic model [1, 22, 2, 9, 8]. The acoustic
model can be trained using DNNs with state-level alignment
information, where the DNN has one relatively constricted
layer with a small number of hidden units (i.e., a ”bottle-
neck”). The bottleneck layer activation can be used as a new
acoustic feature for training the i-vector extractor, or it can
be fed into a second stage DNN acoustic model to produce
a Stacked Bottleneck (SBN) feature [22, 23]. Although the
acoustic model is often trained on monolingual data (e.g., En-
glish), bottleneck features perform reasonably well on LID
tasks [22]. For DID, since the dialects are from the same lan-
guage family, using an SBN that is extracted from a subset of
the dialects can achieve excellent performance [24]. Training
an i-vector extractor is exactly the same for a speaker recog-
nition or an LID system. The only difference is learning the
subsequent projections.

2.2. End-to-End CNN/DNN System

Recently, end-to-end approaches have achieved impressive
performance compare to conventional i-vector approach for
both LID [4, 5, 12, 25] and speaker recognition [7, 6, 26]. In
[12], the authors conducted detailed experiments on an end-
to-end system using a dataset augmentation approach with

acoustic features ranging from Mel-Frequency Cepstral Co-
efficients (MFCCs) to spectrograms. The end-to-end system
performed significantly better than i-vectors if the training
dataset had a large amount of diversity.

In this work, we adopt the end-to-end system proposed
in [12]. This system has a stack of CNN layers, followed
by a global pooling layer that aggregates frame level repre-
sentations to produce to utterance level representations. The
output of global pooling layer is followed by two fully con-
nected layers. Specifically, the network consists of four 1-
dimensional CNN layers (40×5 - 500×7 - 500×1 - 500×1
filter sizes; with 1-2-1-1 strides; the number of filters is 500-
500-500-3000) and two fully connected layers (1500-600).
The size of the final softmax layer is determined by the task-
specific speaker or language labels and the softmax output
can be used directly as a score for each dialect class for the
DID task. We considered MFCCs and Mel-Filterbank ener-
gies (FBANK) as inputs to the end-to-end system.

3. UNSUPERVISED LEARNING USING FHVAE

In this section, we introduce an FHVAE model for unsuper-
vised representation learning from dialectal speech and ex-
plain how we extract features from such models for dialect
identification.

An FHVAE [20] is a variant of variational autoencoders [21,
27] that models a probabilistic hierarchical generative process
of sequential data, and learns disentangled and interpretable
representations. Generation of a sequence of N segments,
X = {x(n)}Nn=1 involves one sequence-level latent variable:
µ2, and N pairs of segment-level latent variable: z1 and z2,
as follows:

1. a s-vector µ2 is drawn from p(µ2) = N (µ2|0, σ2
µ2
I).

2. N i.i.d. latent segment variables Z1 = {z(n)1 }Nn=1 are
drawn from a global prior p(z1) = N (z1|0, σ2

z1I).

3. N i.i.d. latent sequence variables Z2 = {z(n)2 }Nn=1 are
drawn from a sequence-dependent prior p(z2|µ2) =
N (z2|µ2, σ

2
z2I).

4. N i.i.d. sub-sequences X = {x(n)}Nn=1 are drawn
from p(x|z1, z2) = N (x|fµx

(z1, z2), diag(fσ2
x
(z1, z2))),

where fµx
(·, ·) and fσ2

x
(·, ·) are parameterized by a de-

coder neural network.

We illustrate this process in Figure 1. By imposing a sequence-
dependent prior to z2, the model is encouraged to represent
with z2 the generating factors that are relatively consistent
within a sequence. For example, such factors can include
microphone frequency response, room impulse response, and
general vocal tract characteristics particular to a speaker.
On the other hand, z1 tends to encode information about
the residual generating factors that change from segment to
segment, such as phonetic/linguistic content.
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Fig. 1. Graphical illustration of the FHVAE generative model.
Grey nodes denote the observed variables, and white nodes
are the latent variables.

Since the exact posterior is intractable, an FHAVE ap-
proximates the true posterior with an amortized inference
model q(µ2|X)

∏N
n=1 q(z

(n)
1 |x(n), z

(n)
2 )q(z

(n)
2 |x(n)). Specif-

ically, both q(z1|x, z2) and q(z2|x) are Gaussian distribu-
tions, whose mean and variance are parameterized by two en-
coder neural networks with the variables they are conditioned
on as inputs. Specifically, both q(z1|x, z2) and q(z2|x) are
Gaussian distributions. Each of them is parameterized by one
encoder neural network that predicts the posterior mean and
variance, with the variables it is conditioned on as inputs.
On the other hand, q(µ2|X) is a fixed-variance Gaussian
distribution, whose mean is parameterized with a maximum
a posterior (MAP) estimation

∑N
n=1 ẑ

(n)
2 /(N + σ2

z2/σ
2
µ2
)

for testing, where ẑ(n)2 denotes the posterior mean of z2 for
x(n). For training, a trainable lookup table of µ2 posterior
mean for each training sequence is used instead. which en-
ables optimization at the segment level, and utilization of the
discriminative loss proposed in [20] to encourage disentan-
glement.

In this work, we pool the in-domain and out-of-domain
dialectal speech data to train an FHVAE, in order to learn a
disentangled and interpretable representation. Note that since
training of FHVAE models is unsupervised, we can actually
apply the FHVAE model even though the dataset has no di-
alect label. In addition, because at the acoustic level, variation
in dialects correlates with phonetic and lexical variability, but
not channel response or vocal tract characteristics, we argue
that useful information regarding dialect identification is ac-
tually encoded in z1 instead of z2. Hence, similar to [28], we
extract Z1 for each sequence as the new feature representa-
tion and use it for training DNN-based end-to-end systems.
After an FHVAE model is trained, we extract Z1 for each
sequence and use it Among the disentangled generating fac-
tors, we hypothesize that useful information regarding dialect
identification is encoded in z1

4. DOMAIN MISMATCHED DIALECTAL SPEECH

The MGB-3 dataset partitions are shown in Table 1. Each par-
tition consists of five Arabic dialects: EGY, LEV, GLF, NOR,
and MSA. Detailed corpus details can be found in [29]. Al-
though the development set is relatively small compared to
the training set, it matches the test set channel conditions, and
thus provides valuable information about the test domain. In
the following experiment, we divided the train and develop-
ment set into a small subset and limit the use of labels on the
development set to simulate a low-resource condition.

5. EXPERIMENT

5.1. Experiment setup

For i-vector extraction, MFCCs were used to generate 60-
dimensional acoustic features which consist of 20 MFCCs
and their delta and delta-delta’s. Cepstral Mean Normaliza-
tion was used for feature normalization. A GMM-UBM was
trained using MFCCs with 2,048 mixture components, then
a Total Variability (TV) matrix was trained to extract 600-
dimensional i-vectors. Since the GMM-UBM and TV can
be trained without labels, we used training and development
dataset for all experimental conditions in next sections. A
Support Vector Machine (SVM) was used to measure the
similarity between a test utterance and 5 dialects [8]. We did
not consider a bottleneck-feature (BNF) based i-vector sys-
tem for comparison. A BNF extractor must be trained with
supervision using additional data which have phoneme align-
ments. Using this extra information was not comparable to
any system using only the MGB-3 data.

For the end-to-end DID system, we used MFCC and
FBANK features. To extract the features, a spectrogram was
computed using a 400 sample FFT window length with 160
sample advance which is equivalent to 25ms window and
10ms frame-rate for 16kHz audio. A total of 40 coefficient
were extracted for both features and then normalized to have
zero mean and unit variance. The DNN structure is the same
as [12], with four CNN and 2 FC layers as described in Sec-
tion 2. The stochastic gradient descent (SGD) learning rate
was 0.001 with a decay every 50,000 mini-batches with a
factor of 0.98. Rectified Linear Units (ReLUs) were used for
activation nonlinearities. We used a different dataset for train-
ing the network considering various experimental condition
since the end-to-end DNNs need dialect label.

Table 1. MGB-3 Dialectal Arabic Speech Dataset Properties.
Dataset Training Development Test

Utterances 13,825 1,524 1,492
Size 53.6 hrs 10 hrs 10.1 hrs

Channel
(recording)

Carried out
at 16kHz

Downloaded directly from
a high-quality video server
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Table 2. Baseline accuracy performance when using train and
development dataset for training.

System
Accuracy on Test set

If Dev. set is labeled If Dev. set is unlabeled
I-vector 57.44 46.11

End-to-End (MFCC) 65.55 48.86
End-to-End (FBANK) 64.81 47.11

To train FHVAE models, we let each segment x be 20
frames of FBANK features. Following the setting in [20], we
set σ2

z1 = σ2
µ2

= 1, σ2
z2 = 0.25, and dimensions of z1 and

z2 to be both 32. We configured the two encoders and the de-
coder to be two-layer LSTM[30] networks with 256 memory
cells, followed by affine transform layers predicting mean and
log variance of corresponding variables, similar to the archi-
tecture used in [28]. FHVAE models are trained to maximize
the discriminative segment variational lower bound proposed
in [20] with a discriminative weight α = 10. Adam [31] with
β1 = 0.95 and β2 = 0.999 is used to optimize all models.
Tensorflow [32] is used for implementation.

The performance was measured in accuracy, Equal Error
Rate (EER) and minimum decision cost function Cavg*100.
Accuracy was measured by taking the dialect showing the
maximum score between a test utterance and the 5 dialects.
Minimum Cavg *100 was computed from hard decision errors
and a fixed set of costs and priors from [33].

5.2. Resource Limitation Impact on Domain Mismatch

We compared the performance of the baseline approaches in
Table 2. When using the training and development set includ-
ing their label, the end-to-end system shows impressive per-
formance, since the approach is powerful when the training
and test conditions are the same. However, when the devel-
opment set has no labels, all three baselines show similar ac-
curacy and the end-to-end system no longer has an advantage
compared to the traditional i-vector approach. It is interesting
that i-vector does not have advantage on this case although
UBM is trained using both train and development set since
the model does not need supervision. This analysis implies
that although the development dataset is only 10 hours long,
averaging 2 hours for each dialect, it carries valuable infor-
mation about the target domain and has a powerful impact on
the performance. Also, it is observed that GMM-UBM is not
efficient to learn domain mismatched information when the
in-domain set is very small. Both i-vector and end-to-end sys-
tems are unable to use this valuable information properly due
to lack of labels and accuracy subsequently degraded about
20% and 25% respectively compared to when there are la-
bels. We conducted more detailed performance comparison
experiments on the two condition in the next section.

Table 3. Performance on resource-rich condition (develop-
ment set with labels).

Accuracy EER Cavg*100
i-vector 57.44 24.43 23.79

End-to-end (MFCC) 65.55 20.24 19.92
End-to-end (FBANK) 64.81 20.22 19.91

End-to-end (FHVAE z1) 67.98 18.62 18.32
End-to-end (FHVAE z2) 54.55 27.39 27.35

Table 4. Performance on resource-poor condition (develop-
ment set without labels).

Accuracy EER Cavg*100
i-vector 46.11 32.77 32.08

End-to-end (MFCC) 48.86 29.31 28.61
End-to-end (FBANK) 47.86 30.19 29.67

End-to-end (FHVAE z1) 58.16 25.40 24.66
End-to-end (FHVAE z2) 36.36 39.00 38.32

5.3. Resource-Rich Condition

Consider the resource-rich condition in which there are la-
bels on the in-domain data. In this condition, we can fully
utilize the development set with dialect labels as part of train-
ing. All end-to-end approaches except FHVAE z2 show sig-
nificantly better performance than i-vector approaches on all
measurements. Using z1 of FHVAE is the best system and z2
of FHVAE is the worst as shown in Table 3. As we expected,
linguistic information to distinguish language is encoded at
z1, the latent segment variable, and shows better performance
than other features. On the other hand, because the latent se-
quence variable z2 carries information that is not directly re-
lated to the dialect identity, such as channel, it is not surprising
that the model trained on z2 has the worst performance.

5.4. Resource-Poor Condition

As a fully-labeled in-domain dataset is not always available or
can be difficult to collect, we consider a resource-poor condi-
tion, where an in-domain dataset is available but without any
labels. For this condition, an i-vector extractor and GMM-
UBM are trained without supervision, so the in-domain data
could be used for training even though it is a small amount.
However, the end-to-end system is unable to use the in-
domain data because training must be done in a supervised
way. As for the resource-poor condition, using z1 of FHVAE
shows the best performance on all measurements as shown in
Table 4. It is interesting that the performance is very similar
to that achieved by the i-vector system on the resource-rich
condition.

Apart from the absolute numbers in the tables, the greater
performance degradation due to lack of in-domain labels im-
plies that the feature or system is more dependent on the do-
main. The FHVAE z1 based end-to-end approach accuracy
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Fig. 2. Performance variation with incremental train (mismatched domain) and development data (matched domain)

Table 5. Division of Training and Development Dataset.
Dataset Trn-30h Trn-1 Trn-2 Trn3 Trn-4 Trn5

Utterances 7441 554 511 518 548 549
Size 30hrs 2hrs 2hrs 2hrs 2hrs 2hrs

Dataset Dev-1 Dev-2 Dev-3 Dev-4 Dev-5
Utterances 308 303 322 318 315

Size 2hrs 2hrs 2hrs 2hrs 2hrs

Table 6. Dataset usage by system. α is additional labeled set
that can be added from {Trn-1∼5, Dev-1∼5} from Table 5.

System
Unlabeled data
(Train + Dev.)

Labeled data
(Train-30h + α)

i-vector UBM, TV SVM
End-to-end (MFCC, FBANK) - End-to-end model

End-to-end (FHVAE) FHVAE model End-to-end model

degraded only 14% compared to the resource-rich condition,
but the other methods degraded about 20%-26%. Particularly,
FHVAE z2 degraded by 33% which implies that the z2 vari-
able is significantly domain-related as we argued previously.

To examine the efficiency of the proposed approach, we
partition the train and development datasets into smaller sub-
sets to have specific amounts of data, as shown in Table 5.
While all speech from the train and development sets are
available, we only used labels for 30 hours of speech from the
train set as an “essential” system, and gradually added from
2 to 10 hours of additional labels from the train and devel-
opment sets in 2 hour increments. Since each system has a
different algorithm, we specified dataset usage in Table 6. For
example, to add 6 hours of labels from the development set,
we used Dev-1, Dev-2 and Dev-3 labels from Table 5. The
result is shown in Figure 2. We also applied IDVC, which can
be applied to the i-vector system for domain compensation.

When adding the train set, the systems show slight or
no improvement except the end-to-end system using the FH-
VAE z1 variable. For both conditions, the addition of IDVC
does not substantially improve the baseline i-vector results.
When incrementally providing an additional 2 hours of the
train dataset, the improvement on accuracy and EER is un-
der 1% for all systems. However, when incrementally adding
2 hours of the dev dataset, the accrual is between 4% and
7% for the i-vector based and end-to-end approaches respec-
tively. In particular, the gap between MFCC based and z1 of
the FHVAE based end-to-end approach is getting closer when
adding in-domain (development) set while they keep the same
separation when adding out-of-domain (train) set. This obser-
vation tells us that if we did not decide on a target domain or
did not know about the target domain, we can extract domain
invariant features using FHVAE by adding large quantities of
unlabeled data from various domains. And it also indicates
that if we know the target domain precisely, and it is possi-
ble to obtain a target domain dataset with rich labels, using
MFCCs or raw feature on the end-to-end system can be opti-
mized to the specific domain and gives a comparable perfor-
mance to the z1 FHVAE system.

5.5. Performance comparison with uBNF

In this section, we compared uBNF feature [18, 19] which
was extracted from DNN trained in an unsupervised manner.
The approach was successfully adopted on DID task by mod-
ifying network structure considering the relatively small size
of dataset [34]. We trained GMM-UBM model with same pa-
rameter as [34]. Using the posterior label estimation, 4-layer
DNN was trained to extract 40-dimensional uBNF feature.
The extracted uBNF feature was used to train the end-to-
end DID system in both resource-rich and poor condition. In
both conditions, the proposed FHVAE z1 shows better per-
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Table 7. Performance comparison on MGB-3 test set.
Resource-poor Accuracy EER Cavg*100

End-to-end (uBNF [18] 56.64 27.46 26.92
End-to-end (FHVAE z1) 58.16 25.40 24.66

Resource-rich Accuracy EER Cavg*100
End-to-end (uBNF [18]) 66.24 19.98 19.63

End-to-end (FHVAE z1) 67.98 18.62 18.32

formance in all indexes. A possible reason for this difference
is that the uBNF obtain the ground truth label from GMM-
UBM, the performance is dependent on the GMM-UBM. But
the FHVAE does not depend on such as label obtained from
another unsupervised learning, it has more advantage to learn-
ing the speech unsupervised manner.

6. CONCLUSION

In this paper, we describe domain invariant features from un-
supervised learning of dialectal speech. The feature, a latent
segmental variable, can be encoded by an FHVAE. We inves-
tigated the proposed approach along with several baselines
such as i-vectors and end-to-end methods based on CNNs us-
ing conventional acoustic features. The experiments explored
two scenarios, whether the in-domain dataset has a dialect la-
bel or not, in order to explore the effectiveness of unsuper-
vised learning of dialectal speech in various domains. From
the experiments, we observed that the proposed approach is
able to separate segmental and sequential level information
that generalize better to new domains. While the proposed ap-
proach shows significant improvement in all conditions, we
verified that it has a greater advantage in the case where a
large amount of unannotated audio is available.
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