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Abstract
In this paper we investigate environment feature representa-
tions, which we refer to as e-vectors, that can be used for
environment adaption in automatic speech recognition (ASR),
and for environment identification. Inspired by the fact that i-
vectors in the total variability space capture both speaker and
channel environment variability, our proposed e-vectors are ex-
tracted from i-vectors. Two extraction methods are proposed:
one is via linear discriminant analysis (LDA) projection, and
the other via a bottleneck deep neural network (BN-DNN). Our
evaluations show that by augmenting DNN-HMM ASR systems
with the proposed e-vectors for environment adaptation, ASR
performance is significantly improved. We also demonstrate
that the proposed e-vector yields promising results on environ-
ment identification.

Index Terms: robust speech recognition, environmental fea-
tures, noise adaptation, speech environment identification

1. Introduction
There is a continuously growing demand for hands-free speech
input for various applications [1, 2]. However, in the above
distant-talking speech communication systems, the presence of
environmental noise, and/or reverberation, often causes a dra-
matic performance drop on automatic speech recognition (ASR)
systems. When speech signals are corrupted by noise, the statis-
tics of speech features extracted from the speech signals are
also distorted in various domains, and the ASR performance
is significantly degraded. Therefore, there is a strong need
for noise-aware features that can improve robustness in noisy
speech recognition system.

I-vector has been extracted by factor analysis and suc-
cessfully used for speaker recognition and speaker adaptation
[3, 4, 5], and demonstrated state-of-the-art performance for text-
independent speaker detection tasks in the NIST speaker recog-
nition evaluations.

In contrast to i-vector’s success and popularity in speaker
related tasks, there has been little research on its usefulness in
channel and environment applications. I-vectors are extracted
in a way that makes no distinction between channel and speaker
variability. Inspired by this fact, we propose features derived
from i-vector in the total variability space to capture environ-
mental variability only.

One way of separating the environment related information
from i-vector is via dimensionality reduction, using method in-
cluding linear discriminant analysis (LDA). We refer to the en-
vironmental feature obtained by this method as lda-evector.

We also propose a second method to extract environmental
feature from i-vector, by training a bottleneck neural network

(BN-NN). In 2011, Yu and Seltzer applied a DNN for extract-
ing BN features, with the bottleneck being a small hidden layer
placed in the middle of the network [6]. Bottleneck features
have shown success in speaker adaptation and language identi-
fication, as in [7, 8].

Having the novel feature representation extracted from total
variability space, we then perform environment adaptation us-
ing this new feature, in conjunction with acoustic features, for
speech recognition. Our results demonstrate that for a state of
the art hybrid DNN ASR system, system performance can be
improved by 17% when augmented with the proposed e-vector.

Additionally, we also evaluate the usefulness of the pro-
posed feature on blind noise condition classification, and ob-
tained effective results.

The rest of this paper is organized as follows. Section 2
briefly introduces i-vectors. Next, the e-vector is proposed
in Section 3, and two extraction methods are presented. We
demonstrate e-vector adaptation experiments in Section 4, and
e-vector environment classification experiments in Section 5.
Finally, we conclude in Section 6.

2. E-vector extraction method
Inspired by i-vectors, we extract a feature in the total variability
space, which we refer to as e-vectors, to capture the environ-
mental noise variability in particular. We propose two ways for
extracting e-vectors. One is through a dimensionality reduction
via LDA, with appropriate environment labels. The other one is
through a bottleneck NN, where the input targets are i-vectors,
and output targets are the appropriate environment conditions.

2.1. LDA based

The i-vector representation we obtained so far is speaker and
channel dependent. In order to compensate the within class
inter-speaker variability and the session variability, we use Lin-
ear Discriminant Analysis (LDA) to find a low dimensional rep-
resentation.

The idea behind this approach is to seek new orthogonal
axes to better discriminate among different noise environments.
The axes found must satisfy the requirement of maximizing
noise condition variance but minimizing within class variance.
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where i is the mean of i-vectors for each class, C is the number
of classes, and nc is the number of utterances for each class.
In the case of i-vectors, the speaker population mean vector is
equal to the null vector since, in factor analysis, these i-vectors
have a standard normal distribution, which has a zero mean vec-
tor. The purpose of LDA is to maximize the Rayleigh coeffi-
cient. This maximization is used to define a projection matrix
A composed by the best eigenvectors (those with highest eigen-
values) of the general eigenvalue equation:

Sbv = ΛSwv, (1)

where Λ is the diagonal matrix of eigenvalues. The i-vectors
are then submitted to the projection matrix obtained from LDA.

Figure 1: Evector extraction via LDA using environment labels

After the projection matrix is trained, it will be used for
LDA projection on the eval set. Figure 1 depicts an overview of
this process.

2.2. BN-NN based

A Bottleneck Neural-Network (BN-NN) refers to a particular
topology of a NN, such that one of the hidden layers has sig-
nificantly lower dimensionality than the surrounding layers. It
is assumed that such a layer referred to as the bottleneck layer
compresses the information needed for mapping the NN input to
the NN output. A bottleneck feature vector is the vector of val-
ues at the bottleneck layer, as a by-product of forwarding a pri-
mary input feature vector through the BN-NN. In other words,
after a BN-NN is trained for its primary task, the bottleneck
layer is declared to be the output layer and all succeeding layers
are ignored.

Following Sainath et al. we apply a low-rank approxima-
tion to the weights of the softmax layer of the network. This
is done by replacing the usual softmax layer weights by a lin-
ear layer with a small number of hidden units, followed by a
softmax layer. More specifically, a new BN output layer with r
linear hidden units is inserted into the last weight matrix with a
hidden layer of size h, and a softmax layer with s state posterior
outputs. This changes the number of parameters from h ∗ s to
r ∗ (h+ s). There are two benefits of using this method. First,
it ensures the best achievable frame accuracy even with a rel-
atively small r. Second, the linearity of the output for the BN
layer prevents any loss of information when we treat the DNN
as a feature extractor.

The configuration for our BN-NN is
487x1024x1024xMxN, where M is the size of the bottle-
neck, and N is the number of targets. One of the key questions
is what targets to train the BN features on. Since our goal is
to obtain a bottleneck feature that is able to separate different
noise conditions, the noise conditions are used as the targets.

Instead of a single bottleneck layer for all mixed noise con-
ditions, our proposed BN-NN structure extracts separate BN-
evectors for each individual noise condition, with the concate-
nated BN-Evector as the final bottleneck feature output. The ex-
traction method is given in Figure 2. The bottleneck layers share
the same weights for the preceding hidden layers, and each has
its own softmax output with corresponding noise condition tar-
gets. Once we trained the BN-Evector extracting network using
a certain noise environment label, we use the same network to
generate BN-Evector for the eval set.

Figure 2: Evector extraction via Bottleneck NN using environ-
ment labels

3. E-vector for ASR adaptation
To evaluate the effectiveness of the proposed e-vector, we per-
form environment adaptation experiments by augmenting ASR
system with e-vector. Similar to the noise adaptation in [9] us-
ing signal-to-noise ratio, and the speaker adaptation in [10] us-
ing i-vector, we append the e-vectors to original speech features
to supply as an adaptive bias to the neurons in the first hidden
layer.

3.1. Dataset

We perform the experiments on Ford Corpus [11]. Ford Cor-
pus is a 30-hour, 5k-vocabulary dataset collected in a real driv-
ing, reverberant and noisy environment. The utterances were
recorded on a real road, in vehicles of varying body styles
(e.g., small, medium, large car, SUV, pick-up truck) with real
speakers (drivers) with varying gender, age and dialects, under
different ambient noise conditions (blower, road surface, vehi-
cle speed, vehicle wipers on/off, vehicle windows open/closed,
etc.). There are 3 speed conditions (0/35/65 MPH), 2 hvac fan
conditions (On/Off), 2 wiper conditions (On/Off), and 5 vehicle
types in this dataset. For our experiments, the data were ran-
domly partitioned into three sets with non-overlapping speak-
ers. The training set contains 17,183 utterances from 90 speak-
ers, the development set contains 2,773 utterances from 14
speakers, and the evaluation set contains 1,763 utterances from
9 speakers. Aside from the speakers, all other recording condi-
tions are found in all three data sets.

3.2. Baseline model

Our baseline model follows the recipe in [11]. For training a
GMM baseline system, we first flat-start trained 26 context-
independent monophone acoustic models, then used these mod-
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els to bootstrap the training of a context-dependent triphone
GMM-HMM system. The resulting models contain 3,158 tied
triphone states, and 9̃0K Gaussians.

The hybrid DNN baseline is trained with 4 hidden layers,
where each hidden layer has 1024 units; the DNN has 3158
output units. The input to the network consists of 11 stacked
frames (5 frames on each side of the current frame). Both cross
entropy (CE) and state-level minimum Bayes risk (sMBR) loss
objectives are used. The stochastic gradient descent (SGD)
used minibatches of 256 frames, and an exponentially decay-
ing schedule that starts with an initial learning rate of 0.008 and
halves the rate when the improvement in frame accuracy on a
cross-validation set between two successive epochs falls below
0.5%. Cross-validation is done on a set of 180 utterances that
are held out from the training data.

The speech features are fMLLR-adapted [12] MFCC-LDA-
MLLT features, as in [11]. In our experiments fMLLR is ap-
plied both during training and test, which is known as speaker-
adaptive training (SAT) [13].

The eval set baseline recognition results are presented in
Table 1. For the rest of this paper, we choose the hybrid DNN-
SMBR model as our baseline system, and all further results are
based on this baseline.

Table 1: ASR baseline WER. *For the rest of this paper, the
DNN-sMBR system is used as our baseline model.

Model WER (%)

GMM 11.86

hybrid DNN-CE 7.04

hybrid DNN-sMBR* 6.53

3.3. LDA-Evector adaptation results

We can further improve the WER by augmenting original
acoustic features with the e-vector we extracted. The system
is adapted as follows. The speech features are derived from
speech signals in the same way with baseline model. The DNN
acoustic models input is a super vector with e-vector appended
to the speech features.

The results of environment adaptation using lda-evector are
displayed in Table 2. Our experiments show that all of the sys-
tems with e-vectors extracted from different noise targets im-
proved the WERs. Here we only list the result of six good fea-
ture combination candidates in Table 2. We can see that the
model trained with lda-evector extracted from [speed, hvac fan,
wiper, vehicle type] improved the relative WER by 16% com-
pared to the DNN-sMBR baseline, reducing WER from 6.53 to
as low as 5.47.

Table 2: ASR WER using LDA-Evectors

LDA Projection Label used Evector dim WER

speed 2 6.31

hvac fan 1 5.75

wiper 1 6.34

vehicle type 4 5.91

speed+hvac fan 5 5.73

speed+hvac fan+wiper 11 5.48

speed+hvac fan+wiper+vihecle type 20 5.47

3.4. BN-Evector adaptation results

Table 3: ASR WER using BN-Evectors

BN-NN output target BN-evector dim WER

speed 10 6.28

hvac fan 10 5.74

wiper 10 6.14

vehicle 10 5.81

speed+hvac fan 20 5.67

speed+hvac fan+wiper 30 5.47

speed+hvac fan+wiper+vehicle type 40 5.43

The results of environment adaptation using BN-Evector
are displayed in Table 3. The BN-Evector is trained on an ut-
terance base and is appended to each frame of the correspond-
ing utterance. We can see that a 17% relative improvement is
achieved, reducing WER from 6.53 to as low as 5.43. Com-
paring the results in Table 2 and Table 3, we observe that the
BN-Evector performs slightly better than the lda-evector.

Table 4: The effect of the size of BN Layer

BN-NN output target BN-evector dim WER

speed
2 6.3
5 6.28

10 6.28

hvac fan
2 5.76
5 5.74

10 5.74

wiper
2 6.17
5 6.14

10 6.14

vehicle
2 5.94
5 5.82

10 5.81

We also investigate the effect of the size of the bottleneck
in the BN-NN, which directly influences the dimensionality of
the resulting BN-Evector. Results in Table 4 show that the per-
formance starts to saturate at around 10. In Table 3 and the
rest of this paper, we keep our BN size to be 10 for each noise
condition.

3.5. Comparison and Fusion

To better understand the performance, in Table 5 we evaluate the
WER obtained by augmenting original acoustic features with
raw i-vector. We can see that i-vector adaptation gives a 2.5%
relative improvement. We also vary the i-vector dimensional-
ity to evaluate its effect, and 92 gives the best performance, al-
though this effect is very mininal.

Table 5: ASR WER using ivectors directly

Ivector dim WER(%)

92 6.37

50 6.38

Table 6 compares the improvement brought by i-vector
adaptation and e-vector adaptation. Both the lda-evector and
BN-Evector outperform the i-vector by a large margin. This

3080



indicates that e-vector is able to capture accurate information
about the noise environment. The reason that i-vector is not as
good might be the non-environment information might be re-
dundant and could lead to a biased adaptation.

Table 6: ASR WER comparison using ivector and proposed
evector.

System WER(%)

baseline 6.53

+ivector 6.37

+lda-evector 5.47

+BN-Evector 5.43

Table 7 reports the ASR performance of fusing i-vector’s
and e-vector’s for adaptation. The fusion result is slightly better
than using the i-vector or e-vector individually. This indicates
that i-vector and e-vector are complementary, although e-vector
is trained from i-vector. In practice, the i-vector and e-vector
can be used in conjunction with each other to achieve better
adaptation results.

Table 7: ASR WER fusing ivector and evector.

System WER(%)

baseline 6.53

+ivector+lda-evector 5.4

+ivector+BN-Evector 5.3

4. E-vector for noise environment
identification

In this section, we explore the effectiveness of the e-vector on a
different task, noise condition classification. We use the trained
bn network to extract BN-Evector’s from the eval audio files,
and then use the BN-Evector to blindly classify certain noise
condition of the corresponding audio. Table 8 reports the clas-
sification equal error rate (EER) on speed using BN-Evector.
Table 9 reports the classification EER on hvac status using BN-
Evector. Table 10 reports the classification EER on wiper status
using BN-Evector. Table 11 reports the classification EER on
vehicle type using BN-Evector. We can see that BN-evector is
capable of classifying different noise conditions.

Table 8: Speed classification EER using BN-Evector.

BN-Evector extracted with labels classification EER (%)

speed 19.5

speed+hvac fan 19

Table 9: Hvac status classification EER using BN-Evector.

BN-Evector extracted with labels classification EER (%)

hvac fan 16.5

speed+hvac fan 15.5

The results show that the e-vector is able to identify most of
the noise conditions correctly. This indicates that the e-vector
contain useful information about the noise environment. We

Table 10: Wiper status classification EER using BN-Evector.

BN-Evector extracted with labels classification EER (%)

wiper 18

wiper+speed fan 17.5

wiper+speed+hvac fan 16.5

Table 11: Vehicle type classification accuracy using BN-
Evector.

BN-Evector extracted with labels classification EER (%)

vehicle 21.5

vehicle+speed 21

vehicle+hvac fan 20

also observe that, in all four experiments, classification accu-
racy is improved using e-vectors training with more noise la-
bels.

5. Conclustion
We presented a feature representation trained from i-vector,
which we refer to as e-vector, to capture the channel and en-
vironment variability specifically. We have given two e-vector
extraction methods, one via LDA projection, and the other via a
multi Bottleneck DNN. Our experiments on environment adap-
tation using the proposed e-vector brought a 17% WER im-
provement on real-recorded noisy corpora. This outperformed
raw i-vector adaptation improvement by a large margin. We
also showed that the result can be further improved when fusing
i-vector’s and e-vector’s together. The extracted environment
features can also be applied to the blind environment classifica-
tion problem, and our experiment demonstrated the capability
of separating noise conditions using the proposed e-vector. In
the future, we could consider more noise labels, to train a more
complete feature capturing the surrounding noise environment.
This method can be applied to other noisy speech scenarios.
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