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ABSTRACT
This paper describes an Arabic Automatic Speech Recogni-
tion system developed on 15 hours of Multi-Genre Broadcast
(MGB-3) data from YouTube, plus 1,200 hours of Multi-
Dialect and Multi-Genre MGB-2 data recorded from the
Aljazeera Arabic TV channel. In this paper, we report our
investigations of a range of signal pre-processing, data aug-
mentation, topic-specific language model adaptation, ac-
cent specific re-training, and deep learning based acoustic
modeling topologies, such as feed-forward Deep Neural Net-
works (DNNs), Time-delay Neural Networks (TDNNs), Long
Short-term Memory (LSTM) networks, Bidirectional LSTMs
(BLSTMs), and a Bidirectional version of the Prioritized Grid
LSTM (BPGLSTM) model. We propose a system combina-
tion for three purely sequence trained recognition systems
based on lattice-free maximum mutual information, 4-gram
language model re-scoring, and system combination using
the minimum Bayes risk decoding criterion. The best word
error rate we obtained on the MGB-3 Arabic development
set using a 4-gram re-scoring strategy is 42.25% for a chain
BLSTM system, compared to 65.44% baseline for a DNN
system.

Index Terms— Speech recognition, RNNs, Acoustic
mis-match, multi-dialect, multi-genre

1. INTRODUCTION

There are a number of major challenges associated with
automatic speech recognition of conversational multi-genre
broadcasts, including background noise variation, cross-talk,
talker dialects, and transcriber inconsistency of reference
transcripts [1, 2]. The goal of the Arabic MGB-3 challenge
for the multi-genre speech transcription task is to further
the state-of-the-art in Arabic speech recognition, which is a
challenging task considering that Arabic dialectal variation is
inherent in most real life speech transcription applications [3].

In this paper, we present a speech transcription system
we developed for the Arabic MGB-3 ASR task that inves-
tigated a wide range of techniques. For acoustic modeling,
we examined a feed-forward deep neural network (DNN), a
’chain’ Time-Delay Neural Network (TDNN) [4], a ’chain’
Long-Short Term Memory (LSTM) Recurrent Neural Net-
work (RNN) [5], a ’chain’ Bi-directional LSTM (BLSTM)

model using the lattice-free maximum mutual information
(LF-MMI) framework [4]. We also examined the Prioritized
Grid LSTM (PGLSTM) model that has achieved good re-
sults on other conversational speech tasks compared to other
LSTM model variations [2, 6, 7]. Specifically, we investi-
gate a Bi-directional version of the PGLSTM (BPGLSTM).
We also report the effect of a range of signal preprocessing,
data augmentation, accent-specific retraining, topic specific
language model training, acoustic model combination using
Minimum Bayes Risk (MBR) criterion [8], and language
model re-scoring. Our best system achieves a 42.25% word
error rate (WER) on the MGB-3 Arabic development set,
which is a more than 20% absolute error reduction over a
DNN baseline.

2. DATA DESCRIPTION

The five hours of MGB-3 training data (which was called
adaptation data) is not enough by itself to build a robust Ara-
bic speech recognition system. Therefore, we created models
using both the MGB-3 5 hours and 1,200 hours of MGB-2
data. The MGB-2 data was recorded from Aljazeera Arabic
TV channels, and contains a total of 1,200 hours of audio
from 19 different programs. The MGB-2 content can be split
into three broad categories: conversational (63%), where a
presenter talks with more than one guest discussing current
affairs; interview (19%), where a presenter speaks with one
guest; and report (18%), such as news or documentary. The
MGB-2 recordings originate from TV programs with Mod-
ern Standard Arabic (MSA) dominating most of them. It is
estimated that more than 70% of the MGB-2 speech is MSA,
and the rest is spoken in different Dialectal Arabic (DA)
namely: Egyptian (EGY), Gulf (GLF), Levantine (LEV), and
North African (NOR). The output of a speech recognizer
was aligned with the original transcription to generate small
speech segments on average between five and 30 seconds per
segment that were suitable for building a speech recognizer.

The MGB-3 data contains Egyptian broadcast data col-
lected from 80 programs from different YouTube channels.
All programs were transcribed by four different annotators
to explore the non-orthographic nature of dialectal Arabic.
MGB-3 content can be split into seven broad genres; namely
comedy, fashion, sports, cooking, family, movies, and sci-
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ence. Using a total of 15 hours of Arabic speech recorded
from YouTube, MGB-3 data is divided into adaptation (12
minutes * 24 programs), development (12 minutes * 24 pro-
grams), and evaluation (12 minutes * 31 programs) sets. A
transcription was provided for the MGB-3 adaptation and
development sets, while no transcription is available for the
evaluation data.

3. SYSTEM DESCRIPTION

Previous studies showed that neural network models captur-
ing temporal context. RNNs incorporate feedback cycles into
the network architecture, which leads to better modeling of
sequences. There are many implementations of RNNs, such
as LSTMs, and Gated Recurrent Units (GRUs). LSTM suc-
cess in acoustic modeling can be explained by their strength
in memorizing sequences with long range temporal depen-
dencies. LSTMs are easy to train, and do not suffer from
the exploding gradient problems when performing back-
propagation-through-time. The LSTM blocks in the hidden
layers of RNNs consist of input, output, and forget gates
that control the flow of input information from the previous
hidden layer and the output information to be passed on to
the next layer. Sequence training of neural networks using
the Connectionist Temporal Classification (CTC) training
objective is a common trend in ASR. In this work, we train
chain LSTM and BLSTM acoustic models with the Lattice
Free version of the Maximum Mutual Information training
criterion (LF-MMI) [9] modeling framework.

3.1. Data Pre-processing

The SOX toolkit is applied to trim and normalize the MGB-2
and MGB-3 audio recordings that have been recorded using
different microphones, and with differing background noise.
Initially, a high-pass filter with a cutoff frequency of 100Hz
is applied to the signal to remove any DC offset. Then we ap-
ply a companding procedure during the signal pre-processing.
The algorithm mimics tone-to-tone suppression and masking
in the auditory system to improve automatic speech recogni-
tion performance in noise using the following setup with the
following SOX companding option [ compand 0.05, 0.26 :
−54,−90,−36,−36,−24,−24, 0,−120 − 900.1]. The at-
tack and decay parameters (in seconds) determine the time
over which the instantaneous level of the input signal is av-
eraged to determine its volume; attacks refer to increases in
volume and decays refer to decreases. For most situations,
the attack time (response to the music getting louder) should
be shorter than the decay time because the human ear is more
sensitive to sudden loud music than sudden soft music. Our
input channel is companded separately with values of 0.05
and 0.2 seconds. We defined a list of points on the com-
panders transfer function specified in dB relative to the max-
imum possible signal amplitude. The input values must be in

a strictly increasing order but the transfer function does not
have to be monotonically rising. Then we preceded by a soft-
knee-dB value, and the points at where adjacent line segments
on the transfer function meet will be rounded by the amount
given. We applied an additional gain in dB which is applied
at all points on the transfer function which allows easy adjust-
ment of the overall gain. Our values for the transfer function
are [6 : −54,−90,−36,−36,−24,−24, 0,−12]. The ‘6:’
selects 6dB soft-knee companding. The 0 (dB) output gain
is needed to avoid clipping (the number is inexact, and was
derived by experimentation). The input signal is analyzed im-
mediately to control the compander, but it is delayed before
being fed to the volume adjuster. Specifying a delay approxi-
mately equal to the attack/decay times allows the compander
to effectively operate in a ‘predictive’ rather than a reactive
mode. We selected a value of 0.2 seconds. The 90 (dB) for
the initial volume will work fine for a clip that starts with
near silence, and the delay of 0.1 (seconds) has the effect of
causing the compander to react a bit more quickly to sudden
volume changes.

3.2. Data Augmentation

Previous studies showed great improvement in accuracy using
audio augmentation and perturbation [10]. We performed au-
dio speed and volume perturbation with speed factors that are
uniformly sampled from the interval [0.85 , 1.3]. The speed
perturbed data is followed by volume perturbation with vol-
ume factors that are uniformly sampled from the interval [ 0.1
, 3.0]. We apply 40 rounds of data augmentation to the MGB-
3 data in the aforementioned intervals. This gives us 40 times
the original speech utterances from MGB3.

3.3. Language Modelling

The organizers provided a trigram and 4-gram language
model trained on MGB-2 data, and some additional data.
In order to familiarize the language model with the MGB-3
data we developed a trigram and 4-gram language model
(LM) trained using the MGB-2 and MGB-3 transcripts (ex-
cluding the development and test data). The trigram is used
for decoding to generate decode lattices. A 4-gram LM is
then used for re-scoring the lattices. We use interpolated
Kneser-Ney smoothing on both the LMs, which are built us-
ing the SRILM toolkit [11]. A previous study on the MGB
challenge showed that using an RNN based language model
[12] using limited data will not lead to an improvement in
accuracy [13]. Therefore, we did not explore that option.

3.4. Lexicon

Arabic is a phonologically complex language [14], and us-
ing a grapheme-based lexicon to reduce out-of-vocabulary
(OOV) words can be an effective strategy, especially for
multi-dialect Arabic speech. In our experiments we used the
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grapheme-based lexicon in BuckWalter format provided by
the organizer, and added the extra vocabulary from MGB-
3 for our experiments. The grapheme based lexicon has a
one-to-one word-to-grapheme mapping, which means that
the vocabulary size is the same as the lexicon size.

3.5. Feature Extraction and Acoustic Modelling

This section presents the details of the neural network acous-
tic modelling approaches, the architectures, the hyperparam-
eter settings, and the input features used for developing these
models.

3.5.1. Alignment Generation

We built a baseline recognizer using Gaussian Mixture Mod-
els (GMMs) and Hidden Markov Models (HMMs). These
were trained using 39-dimension Mel Frequency Cepstral
Coefficients (MFCC) derived features (i.e., 13 static MFCCs
with delta and delta-delta MFCCs) that were transformed
using Linear Discriminant Analysis (LDA), a Maximum
Log-Likelihood Transform (MLLT) [15], and feature space
Maximum Likelihood Linear Regression (fMLLR). Senone-
based frame-level alignments generated from the GMM-
HMM model were used to train a variety of neural network
based models. Five models were trained using alignments
generated by the GMM-HMM model, namely a feed forward
DNN, BPGLSTM (5x1024), a sequence discriminatively
trained chain Time-Delay Neural Network (TDNN) model
(7x625), and a 7 layer LSTM and BLSTM.

3.5.2. Feature Extraction

For the BPGLSTM model, we use a 30 dimensional filter
bank features without splicing. For the remaining models we
found that the high resolution MFCC features outperform the
filter bank features. All the remaining models are trained us-
ing concatenated 40 dimensional high resolution MFCC fea-
tures, and 100 dimensional i-vectors for each frame, unless
mentioned otherwise [16]. The i-vector extractor is trained
on top of features that are not mean-normalized, so that the
mean offset information can be encoded in the i-vectors [17].
This eliminates the need for adaptation or normalization of
the MFCC input features to our systems [18]. Once the i-
vector extractor is trained, i-vectors for the training and test
data are extracted in an on-line fashion. During this stage,
only prior frames to the current frame are used along with the
prior utterances from the same speaker to extract the i-vectors.
The i-vector extraction framework consists of a GMM Uni-
versal Background Model (UBM) trained on LDA+MLLT-
transformed MFCCs, that consist of 512 GMM components,
and that makes use of 300k feature frames. The UBM first-
order statistics are then modeled using a factor analysis model
known as total variability subspace model[17]. The parame-
ters of the model are learned in an unsupervised manner. In

this work, variability subspace parameter was set to 100 i-
vector dimensions. All neural network based models used
spliced features of width 5 (window of +/- 5 frames) as input,
unless stated otherwise.

3.5.3. BPGLSTM Structure

The BPGLSTM models arrange LSTM blocks into multidi-
mensional grids such that each grid contains one set of LSTM
blocks for each dimension, including the depth dimension.
This architecture introduces per-dimension gated linear de-
pendencies between adjacent cell states, which mitigates the
vanishing gradient problem along all dimensions. The best
PGLSTM architecture reported in [6] has 5 layers, and each
layer contains 1,024 memory cells along with a 512-node lin-
ear projection layer. To keep the number of parameters com-
parable, the BPGLSTM model we consider here also has 5
layers, but each LSTM now contains 512 memory cells along
with a 300-node linear projection layer added on top of each
LSTM output.

The Computational Network Toolkit (CNTK) [19] is used
for BPGLSTM training. As [20] suggests, all weights are
randomly initialized from the uniform distribution with range
[−0.05, 0.05], and all biases are initialized to 0, without
generative or discriminative pre-training [21]. The model is
trained with a cross-entropy (CE) criterion, using latency-
controlled back-propagation-through-time (BPTT) [22] for
optimization, where each BPTT segment contains 80 frames,
with additional 22 future frames used to provide the right
context. 40 utterances are parallelized in each mini-batch.
No momentum is used for the first epoch, and a momentum
of 0.9 is used for subsequent epochs [23]. L2 constraint
regularization [24] with weight 10−5 is applied.

3.5.4. Chain LSTM and BLSTM Structures

The chain LSTM model is composed of a total of 7 recur-
rent and non-recurrent projection layers, as described previ-
ously [5]. The spliced indexes at the different layers were [ {-
3,-2,-1,0,1,2,3}; {0}; {0}; {0}; {0}; {0}; {0} ], and the delay
at each layer is chosen to be -3, and the output label delay is 5.
The time delay introduces a delay between the inputs and the
targets. Providing the network with a few time-steps of future
context can have a positive impact on the robust training pro-
cess, since it provides short distortions, especially when it is
used with LSTMs. Both the recurrent, and the non-recurrent
projection dimensions are set to 256, and the training process
is repeated for 6 epochs. Purely sequence trained models are
trained using a sequence objective, without the need for Cross
Entropy training.

The acoustic model architecture for the chain bidirec-
tional LSTM (BLSTM) is the same as that of the chain
LSTM, except that the training occurs in both forward and
backward directions.
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3.5.5. Chain TDNN Structure

The chain TDNN model is composed of 7 layers with 725
Rectified Linear units (ReLUs) at the input layer. The spliced
indices at the different layers were [ {-1,0,1}; {-1,0,1,2}; {-
3,0,3}; {-3,0,3}; {-3,0,3}; {-6,-3,0}; {0} ] with LDA applied
to the input features. It require less training time than se-
quence models such as LSTMs, while attempting to capture
the long-term temporal dependencies that a sequence model
is capable of doing.

3.5.6. DNN Structure

The FDNN model has 7 layers, each layer having 1024 sig-
moidal neurons. Input to the FDNN is a 40 dimensional trans-
formed MFCC feature vector. 9 frames of 13 dimensional
MFCC feature vectors are spliced together, mean normalized,
and reduced to a 40 dimensional representation using LDA,
followed by Maximum Likelihood Linear Transform (MLLT)
[15], and Maximum Likelihood Linear Regression (fMLLR)
for feature level speaker adaptation and normalization. The
fMLLR transform is obtained from a baseline GMM-HMM
system with speaker adaptive training (SAT) [25]. The out-
put of the FDNN is a softmax layer, whose units correspond
to triphone states. A baseline GMM-HMM system provides
frame-level HMM-state alignments that are used as training
examples in a multi-class classification setting. The FDNN
is trained to minimize the Cross Entropy loss function using
Stochastic Gradient Descent (SGD). We use a learning rate
of 0.008 for SGD for the first epoch and for later epochs, the
learning rate is decided using the ”new-bob” algorithm [26].
Mini-batches of size 256 are used during the training stage.

3.5.7. Model Combination

Different models complement each other in generating a hy-
pothesis transcript. Therefore, we exploit a round of model
combination on our most successful systems. This was done
using lattice combination and a hypothesis scoring method
using Minimum Bayes Risk (MBR) to minimize the expected
WER [8].

3.6. Measurement of Word Error Rate (WER)

There is varying qualities across the transcriptions provided
by multiple transcribers. The word error rates (WERs) re-
ported in this work average the % accuracy across the tran-
scriptions provided by all four transcribers. The official
results by the organizers is reported using multi-Reference
Word Error Rate (MR-WER) [27]. They Also reported the
average WER (AV-WER) across the four transcribers for the
test set.

4. EXPERIMENTAL RESULTS

Previous studies showed that neural network models cap-
turing temporal context at acoustic and phonemic level out-
performed all other models in multi-dialect ASR [2, 28,
29, 30], dialect Identification [31, 32, 33], speaker diarization
[34, 35], phone classification [36], and acoustic-physiological
measurements [37]. In this section we explore their strength
in speech recognition in presence of dialectal speech, genre
and channel mismatch.

We explore different approaches to address the dialect,
acoustic background, and topic mismatch between the train-
ing and the test set at the pre-processing, feature extraction,
acoustic modelling, and language modelling stages of the
speech recognition process. The Computational Network
Toolkit (CNTK) [19], Kaldi speech recognition [38], and
SRILM language modelling [11] toolkits were used for this
research. Our recipe will be made available for the MGB-
3 challenge via a GitHub repository, and the databases are
accessible through the challenge website.

4.1. Effect of Data Pre-processing and Augmentation

The baseline WER on the MGB-3 development set using a
DNN based system trained on 5 hours of the MGB-3 adapta-
tion set, and 1,200 hours of the MGB-2 data is 79.8%. After
applying data pre-processing to the MGB-2 and the MGB-3
data, and 40 rounds of speed followed by volume perturbation
to the 5 hours of data from MGB-3 adaptation set, this WER
is reduced to 72.2%.

4.2. Adapting Lexicon and Language Model to MGB-3

The original language model provided by the organizers
was created with the MGB-2 data and some additional data.
When we augmented the language model and lexicon with
the MGB-3 adaptation data, the DNN baseline WER was re-
duced from 72.2% to 65.4%. We consider the 65.4% WER to
be our baseline result, as we explore other modeling methods.

4.3. Alternative Neural Network Acoustic Models

In this section we show how using more complex deep learn-
ing strategies has improved our results. In these experiments
we used the data augmentation and pre-processing proce-
dures, and we used the MGB-3 modified lexicon and lan-
guage model. The WER results of the DNN, TDNN, LSTM,
BLSTM, and BPGLSTM are shown in Table 1.

Model DNN TDNN LSTM BLSTM BPGLSTM
WER (%) 65.44 53.53 51.90 44.89 42.95

Table 1: WERs of DNN, TDNN, LSTM, and BLSTM models.
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4.4. Dialect Specific Retraining

The MGB-3 data consists of Egyptian dialect data while the
MGB-2 data consists of multiple Arabic dialects. In this ex-
periment we applied a dialect identification system presented
in [39] to the MGB-2 data, and selected the utterances con-
sidered to be the Egyptian dialect, in addition to the MGB-
3 adaptation data for accent specific retraining in our sys-
tems (In total 40 hours). Unfortunately, as shown in Table 2,
dialect specific training degraded WER performance for all
models. We suspect that the reason might be due to the small
amount of dialect specific data, or acoustic mismatch between
the MGB-2 and MGB-3 data.

System DNN TDNN LSTM BLSTM
Baseline (No re-training) 65.44 53.53 51.90 44.89
Dialect specific retraining 66.28 56.00 54.61 49.53

Table 2: WERs after the dialect specific retraining.

4.5. Topic Specific Language Models

MGB-3 content can be partitioned into seven broad genres;
namely comedy, fashion, sports, cooking, family, movies, and
science. We attempted to create topic specific language mod-
els by interpolating the language models created using MGB-
3 plus MGB-2 data, with MGB-3 topic specific data. As
shown in Tables 3 and 4, topic specific language models did
not improve the WERs across a majority of topics. We sus-
pect that this is due to the small amount of topic specific ma-
terial in the MGB-3 adaptations set (approximately 5 hours).

Topics TDNN LSTM
Comedy 55.61 53.04
Cooking 54.29 51.62
Family 42.69 40.42
Fashion 68.66 67.74
Movies 66.06 63.31
Science 51.68 49.53
Sport 51.14 49.93

Table 3: WERs with topic specific language models.

4.6. Language Model Re-scoring

Up to this stage we have used 3-gram language models in all
our experiments. This section reports the WER after applying
4-gram re-scoring to the development set, which leads a WER
improvement across all acoustic models, as shown in Table 5.

4.7. Acoustic Model Combination with LF-MMI

In this section we report the result after combining the chain
LSTM and BLSTM acoustic models using the Lattice free

Topics TDNN LSTM
Comedy 52.65 49.15
Cooking 51.28 50.93
Family 40.51 37.45
Fashion 68.27 63.95
Movies 63.90 60.22
Science 48.87 46.56
Sport 49.87 47.23

Table 4: WERs without topic specific language models.

Language Model TDNN LSTM BLSTM BPGLSTM
Baseline (3-gram) 53.53 51.90 44.89 42.95
4-gram re-scoring 52.13 48.53 42.25 42.64

Table 5: WERs after 4-gram re-scoring of acoustic models.

Maximum Mutual Information (LF-MMI) approach. More
details on the LF-MMI training objective can be found in [9].
Unfortunately, we were unable to improve the WER using
model combination. We believe this result might be because
there was not enough difference between the two acoustic
models, although this is clearly an area that needs further in-
vestigation.

Language Model TDNN LSTM BLSTM Combination
3-gram 53.53 51.90 44.89 50.58
4-gram 52.13 48.53 42.25 47.18

Table 6: Effect of LF-MMI system combination.

4.8. Topic-Specific Performance of Best Overall System

In previous sections we explored different strategies to reduce
the multi-conditional data problem and language mismatch
between the development set and the training data. This
section reports the topic specific WERs of our best overall
system, which was achieved after applying data signal pre-
processing, data augmentation, and 4-gram re-scoring using
the chain BLSTM structure. As shown in Table 7, this led
to an overall 42.25% WER on the development set data. We
can also see that the WERs varied considerably depending
on the genre of the broadcast, ranging from a low of 31.90%
WER for family shows, to a high of 53.89% WER for fashion
shows.

5. CONCLUSIONS

In this paper we describe the ASR systems we have investi-
gated as part of the MGB-3 Arabic ASR speech transcription
challenge. In particular, we examined the recently introduced
LF-MMI modeling framework, and achieved the our best
overall WER on the development set of 42.25%. In order to
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Topic BLSTM WER (%) BPGLSTM WER (%)
Comedy 42.70 42.58
Cooking 42.30 41.86
Family 31.90 29.50
Fashion 53.89 54.40
Movies 52.48 53.39
Science 38.29 38.35
Sports 39.05 39.38

All 42.25 42.64

Table 7: Topic-specific WER of best overall ASR system.

be able to apply a range of complex deep learning algorithms,
and address the limited data problem we decided to exploit
the 1,200 hours of MGB-2 data from the Aljazeera Arabic TV
channel, in addition to the original 5 hours of adaptation data
and 5 hours of development data from YouTube. To address
the acoustic mis-match between the MGB-2 and MGB-3 we
applied multiple rounds of speed and volume perturbation
to the MGB-3 data. Next, to address the multi-genre prob-
lem we created a genre-specific language model created as a
result of interpolation of the MGB-2, and MGB-3 genre spe-
cific language model that was created for each topic. We used
a dialect identification system to enable dialect-dependent
acoustic model retraining to address dialectal mis-match be-
tween the training and test data. We used a grapheme-based
lexicon provided for this task and added missing words from
MGB-3 transcripts.

The best WER was achieved using a chain BLSTM. This
system is trained using in total 1,400 hours of data comprising
1,200 hours of MGB-2 data and 5 hours of MGB-3 adaptation
data, after a round of data pre-processing and 40 rounds of
speed and volume perturbation. This model is re-scored us-
ing a 4-gram language model. We did not manage to gain any
improvement in accuracy through exploiting dialect specific
re-training, and topic specific language modeling, so these re-
main issues for future investigations. The official results for
the MGB-3 are 36.8% MR-WER and 44.9% average WER.
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