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ABSTRACT
The Arabic language, with over 300 million speakers, has sig-
nificant diversity and breadth. This proves challenging when
building an automated system to understand what is said.
This paper describes an Arabic Automatic Speech Recogni-
tion system developed on a 1,200 hour speech corpus that was
made available for the 2016 Arabic Multi-genre Broadcast
(MGB) Challenge. A range of Deep Neural Network (DNN)
topologies were modeled including; Feed-forward, Convo-
lutional, Time-Delay, Recurrent Long Short-Term Memory
(LSTM), Highway LSTM (H-LSTM), and Grid LSTM (G-
LSTM). The best performance came from a sequence dis-
criminatively trained G-LSTM neural network. The best
overall Word Error Rate (WER) was 18.3% (p < 0.001) on
the development set, after combining hypotheses of 3 and 5
layer sequence discriminatively trained G-LSTM models that
had been rescored with a 4-gram language model.

Index Terms— Arabic, Automatic Speech Recognition,
MGB Challenge, Deep Neural Networks

1. INTRODUCTION

Increases in computational power and data sizes, along with
foundational work on neural networks have motivated a broad
range of research adopting, developing, and evaluating such
models. These developments have gone beyond the clas-
sical use of Gaussian Mixture Models (GMM) and Hidden
Markov Models (HMM) for Automatic Speech Recognition
(ASR) systems. Hinton et al. showed the strength of us-
ing feed-forward neural networks to model speech [1, 2, 3].
Further developments to harness temporal context showed
the power of Recurrent Neural Networks (RNN) in the fla-
vor of Long Short-Term Memory (LSTM) models [4, 5].
Another powerful topology is the Convolutional Neural Net-
work (CNN) which attempts to model local information in
the feature space [6, 7]. However, these have generally found
to be more powerful in the domain of vision [8, 9, 10].

Further variations of the LSTM model exist, such as the
the Highway LSTM (H-LSTM) and Grid LSTM (G-LSTM).

The H-LSTM introduces a directed gated connection between
any given memory cell clt in a layer l to that of the correspond-
ing cell cl+1

t in the next layer l + 1 above [11, 12, 13]. This
connection provides a linear dependence between the cells of
different layers, in addition to the linear dependence between
cells across time that exists in LSTMs. A G-LSTM is a gen-
eralized version of the multi-dimensional LSTM, where each
grid contains the same number of LSTM blocks as the number
of dimensions, which are time and depth in our case. Gated
linear dependence is introduced to adjacent cells at each di-
mension. Both H-LSTM and G-LSTM ease the problem of
the vanishing gradient along depth dimension and hence en-
able the training of deeper neural network models [14].

Another topology being explored, the Time-Delay Neural
Network (TDNN), works to capture a wider context of infor-
mation with respect to time at both the input and at deeper
layers of the network [15]. This is managed by splicing to-
gether features at different timestamps at some or all of the
layers in the network. A recent development is to perform
sequence discriminative training without the need of frame-
level cross-entropy pre-training. This is done by performing
Maximum Mutual Information (MMI) based sequence train-
ing at the phone level. This method successfully outperforms
CE trained models on datasets of various sizes [16].

Previous work in the domain of Arabic Automatic Speech
Recognition has utilized up to 1,800 hours of data [30], with
limited use of Deep Neural Networks for acoustic model-
ing [18, 21, 30]. The largest single Arabic dataset available
until now was the 500 hour GALE corpus [31, 32]. Table
1 provides a summary of research in the field as well as the
general ASR performance. In comparison, our current system
was trained with data on the larger end of developed systems
(1,200 hours) with the release of the Arabic MGB dataset,
and employed state-of-the-art in acoustic modeling tech-
niques, extending existing work in the field. Specifically, we
evaluate the performance of several DNN topologies; Feed-
forward, CNN, LSTM, TDNN, H-LSTM, and G-LSTM. Not
only did we compare Neural Network topologies of existing
toolkits (Feed-forward, CNN, and TDNN), but we also com-

299978-1-5090-4903-5/16/$31.00 ©2016 IEEE GlobalSIP 2016



Table 1. Arabic ASR Approaches in Literature
Reference Hours Dataset Language Model Acoustic Model WER (%)
Biadsy et al. [17] 40 T 3gram GMM 43.1 - 47.3
Cardinal et al. [18] 50 Q 3gram GMM, DNN 18.0 - 42.6
Billa et al. [19] 60 B 3gram GMM 15.3 - 31.2
Afify et al. [20] 100 F, T 3gram GMM 14.2 - 21.9
Thomas et al. [21] 100 EA 3gram DNN, CNN 31.9 - 40.0
Messaoudi-Lamel et al. [22] 150 F, T, B 3gram GMM 13.2 - 24.8
Messaoudi-Gauvain et al. [23] 150 F, T, B 3gram GMM 14.8 - 16.0
Xiang et al. [24] 150 F, T, B 3gram GMM 17.8 - 31.8
Ali et al. [25] 200 G 3gram GMM/DNN 15.8 - 43.5
Al-Haj et al. [26] 450 IA 3gram GMM 33.3 - 37.0
Vergyri et al. [27] 1,100 G 3gram GMM 8.9 - 36.4
El-Desoky et al. [28] 1,100 G 3gram GMM 13.9 - 16.3
Ng et al. [29] 1,400 F, T, G, IA 3gram GMM 10.2 - 18.8

Mangu et al. [30] 1,800 G 3gram
GMM, Bayesian

Sensing
7.1 - 12.6

Our System 1,200 MGB
3gram, Rescore:
4gram, RNNLM

GMM, DNN, CNN,
TDNN, (H/G-)LSTM

18.3 - 40.3

Dataset: T = TDT4, Q = QCRI/Aljazeera in-house, B = BBN in-house News, F = FBIS, G = GALE, EA = Egyptian
Arabic, IA = Iraqi Arabic, MGB = Multi-Genre Broadcast.

pared with LSTM models developed in-house. We highlight
that the G-LSTM model was applied for the first time to an
ASR task.

2. METHOD

2.1. Toolkits

Our ASR pipeline employed a number of tools to develop the
various components. We used the KALDI speech recognition
toolkit to extract features, and to build and evaluate acoustic
models [33]. The CNTK toolkit was also used to train acous-
tic models [34], while the SRILM toolkit was used to build
the language models [35].

2.2. Features

We built a baseline recognizer using Gaussian Mixture Mod-
els (GMMs) and Hidden Markov Models (HMMs). These
were trained using 39-dim Mel Frequency Cepstral Coeffi-
cients (MFCC) features that were transformed using Linear
Discriminant Analysis (LDA), Maximum Log-Likelihood
Transform (MLLT), and feature space Maximum Likelihood
Linear Regression (fMLLR). Alignments generated from the
GMM-HMM model were used to train a variety of DNN
based models. The DNN models were trained using Mel
Filterbanks (Fbank) either 30 (for the feed-forward models)
or 80 in dimension (rest of the models), all of which were
concatenated with 3 pitch features. All DNN models used as
input spliced features of width 5, unless stated otherwise.

2.3. DNN Models

Three models were trained using alignments generated by the
GMM-HMM model; (1) a feed-forward DNN was trained
with the Cross Entropy (CE) criterion, composed of 5 lay-
ers and 2048 hidden units in each layer, (2) a Convolutional
Neural Network (CNN) with 4 layers and 2000 hidden units in
the first layer, and (3) a Time-Delay Neural Network (TDNN)
with 6 layers and 3000 hidden units in the first layer.

Alignments from DNN-CE model were then used to train
(1) a feed-forward DNN of the same architecture but with the
Minimum Phone Error (MPE) criterion, (2) a sequence dis-
criminatively trained ‘chain’ TDNN model (7x625), (3) a 3-
layer LSTM model, (4) two H-LSTM models, with 3 layers
and 5 layers respectively, and (5) two G-LSTM models, with
3 layers and 5 layers respectively as well.

The CNN was composed of 4 layers, the first layer was
a 1D convolution component with a maxpooling component,
the second layer was a single 1D convolutional component,
with the third and fourth layers composed of affine compo-
nents with ReLU nonlinearities. The first layer had 128 fil-
ters, with a patch step size of 1, a dimension of 8, and a pool
size of 4. There were 256 filters in the second layer with a
patch step of 1, and a patch dimension of 8.

The TDNN was composed of 6 layers, with connections
of [{-4,-3,-2,-1,0,1,2,3,4};{0};{-2,2};{0};{-4,4};{0}]. The
input layer had 3000 hidden units, with the input feature a
splice of width 4 (window of +/- 4 frames). The second layer
was fully connected to the layer below, the third layer con-
catenated the input from activations at timestamps only at mi-
nus and plus 2 with respect to the node being considered, the
third layer was fully connected to the layer below, and so on.
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Fig. 1. Experimental Setup of Arabic ASR System.

The chain TDNN model was composed of 7 layers
with 625 Rectified Linear units (ReLU) at the input layer.
The spliced indices at the different layers were [{-1,0,1};{-
1,0,1,2};{-3,0,3};{-3,0,3};{-3,0,3};{-6,-3,0};{0}] with LDA
applied to the input features. We used the default parameters
as defined in the Kaldi recipe 1.

For the LSTM and H-LSTM, each layer was comprised
of 1024 memory cells, and the cell output was fed into a
512-unit linear projection layer [12]. For the G-LSTM, each
layer contained 1024 memory cells for the time dimension
and 1024 memory cells for the depth dimension, of which the
outputs were also projected respectively through a linear layer
to 512 dimensions. Furthermore, we refined two G-LSTM
models by sequence discriminative training with state-level
minimum Bayes risk (sMBR) criterion, using the alignments
and denominator lattices generated by each model, respec-
tively.

2.4. Model Combination

We also assessed how models complement each other in gen-
erating a hypothesis transcript. This was done using lattice
combination and hypothesis scoring method presented in
[36], which applies Minimum Bayes Risk to minimize the
expected WER.

2.5. Lexicon

We use the provided lexicon composed of graphemes, which
is a one-to-one mapping between character and acoustic unit,
containing a total of 960,000 word entries, and 38 acoustic
units. This lexicon had an Out-Of-Vocabulary (OOV) rate of
1.76% on the development set.

1kaldi/egs/swbd/s5c/local/chain/run_tdnn_7b.sh

2.6. Language Model

We decoded with a 3-gram model trained on the training data
only (8 million words). A 4-gram model was trained on the
larger provided text using Knesser-Ney Discounting with a
pruning threshold of 1e-10. We also experimented with a Re-
current Neural Network (RNN) language model, using the
faster-rnnlm tool of the Kaldi toolkit. We trained two RNN
language models on the larger text, one with 1000 hidden
units and a hierarchical softmax, while the second was com-
posed of 300 hidden units using the Noice Contrastive Error
Criterion set to 20.

2.7. Evaluation

In addition to the standard Word Error Rate (WER) metric for
evaluating ASR performance, we present the statistical sig-
nificance of these values compared to (1) the GMM-HMM
baseline, and (2) compared to its closest and lesser perform-
ing model in order to gauge the incremental significance of
WER improvements. The Matched Pair Sentence Segment
Word Error (MAPSSWE) significance test was used [37].

3. DATASET

We trained on 1,200 hours of transcribed audio provided by
the 2016 Arabic MGB Challenge. 2 The dataset is composed
of 4,000 programs broadcast on the Aljazeera News Chan-
nel, spanning 10 years of programming from 2005 to 2015.
The transcription is generated from a lightly supervised sys-
tem, with varying levels of manual annotation. The data is
organized into 375,000 utterances containing over 8 million
words, and a vocabulary of 200,000 words.3 Development
and evaluation sets were partitioned from the larger set and
are 10 hours in duration each. A larger text corpus was also
provided, containing over 120 million words, and a vocabu-
lary of 1.4 million words. In addition to the audio, transcrip-
tions, and text, a lexicon was provided. Further details on the
dataset can be found here [38].

4. RESULTS

A summary of our results are in Table 2. We found that
training with DNNs provided at least a 10% absolute gain in
performance when compared with the classical GMM-HMM
baseline. LSTM based models provided the best performance
(23.6% WER) compared to the feed-forward DNN (25.6%),
TDNN (27.1%), and CNN models (29.5%), while the best
performing system was the discriminatively trained 5 layer G-
LSTM with a WER of 20.1%. The chain TDNN performed as

2http://www.mgb-challenge.org/arabic.html
3http://alt.qcri.org/MGB_challenge_Arabic_Track_

2016/MGB_Arabic_description_2016.pdf
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Table 2. Development Set Results of Models

Model Topology Features Alignments WER (%)
p < (prev/base)

WER (%) 4gram
p < (prev/base)

GMM-HMM - MFCC+LDA+MLLT+FMLLR - 40.3 (-/-) -
DNN CE 5x1024 30 Fbank + Pitch GMM 29.7 (0.001/0.001) 28.1 (0.001/0.001)
CNN 4x2000 80 Fbank + Pitch GMM 29.5 (0.472/0.001) 28.1 (0.734/0.001)
TDNN 6x3000 80 Fbank + Pitch GMM 27.1 (0.001/0.001) 25.8 (0.001/0.001)
DNN MPE 5x1024 30 Fbank + Pitch CE 25.6 (0.001/0.001) 24.7 (0.001/0.001)
Chain TDNN 7x625 80 Fbank + Pitch GMM 23.6 (0.001/0.001) 23.4 (0.001/0.001)
LSTM 3x1024 80 Fbank + Pitch CE 23.6 (0.936/0.001) 22.7 (0.001/0.001)
H-LSTM 3L 3x1024 80 Fbank + Pitch CE 23.3 (0.027/0.001) 22.6 (0.250/0.001)
H-LSTM 5L 5x1024 80 Fbank + Pitch CE 23.1 (0.055/0.001) 22.4 (0.184/0.001)
G-LSTM 3L 3x1024 80 Fbank + Pitch CE 22.4 (0.001/0.001) 21.7 (0.001/0.001)
G-LSTM 5L 5x1024 80 Fbank + Pitch CE 22.2 (0.110/0.001) 21.5 (0.070/0.001)
G-LSTM 3L sMBR 3x1024 80 Fbank + Pitch CE 20.4 (0.001/0.001) 19.5 (0.001/0.001)
G-LSTM 5L sMBR 5x1024 80 Fbank + Pitch CE 20.1 (0.009/0.001) 19.2 (0.034/0.001)

Top 2 Combined G-LSTM sMBR
(3L+ 5L) 80 Fbank + Pitch CE - 18.3 (0.001/0.001)

well as the LSTM model (23.6%). We also found that rescor-
ing with a 4-gram model improves performance by 0.2% to
1.6% absolute WER. Although we do not report the numbers,
we note that when rescoring with the RNN language mod-
els there were no observable improvements in performance.
Finally, combining the hypotheses of the top two systems -
the 3 and 5 layer G-LSTM sMBR after 4-gram rescoring -
yielded the best results with a WER of 18.3%. All results
were found to be significant at p < 0.001 with respect to the
GMM-HMM baseline, while 8 out of the 13 results differed
significantly from their lower neighbors at p < 0.05.

5. DISCUSSION

We found that models capturing context (LSTMs) with re-
spect to time were superior to other neural network topolo-
gies. Although the CNN model only performed as well as
the DNN-CE model, there could be other ways to use this
model to leverage its strengths. CNNs have been found to be
good at extracting feature representations and reducing vari-
ance in the frequency domain [39], therefore, it may be bet-
ter utilized if piped within a hybrid-like DNN topology, as
a feature extraction step [40]. The TDNN performed better
than the DNN-CE which may be due to the way it captures
a wider temporal context at both the input and at deeper lay-
ers of the network [15]. Interestingly, the chain TDNN model
outperformed the sequence discriminatively trained DNN and
performed as well as the LSTM even though it trained on
weaker alignments (GMM-HMM versus CE). This highlights
the strength and feasibility of sequence discriminative train-
ing with a phone level MMI objective function of a neural
network with a TDNN topology. Although rescoring with an
RNN language model did not help performance, gain from
the RNN language model may be achieved with more opti-
mized training parameters, a space which we did not exten-

sively search. The significance of the results (8/13 results with
p < 0.05 compared to next increase in WER) highlights that
each incremental improvement in WER introduced by a dif-
ferent network topology is a significant increase, even if it is
a difference of only 0.3% absolute.

6. CONCLUSIONS

We have described the MIT system for Arabic ASR devel-
oped on the 1,200 hour dataset of the 2016 Multi-Genre
Broadcast Challenge. We evaluated several DNN topolo-
gies; Feed-forward, CNN, TDNN, LSTM, H-LSTM, and
G-LSTM. We found that models capturing temporal con-
text (LSTMs) out-performed all other models, with sequence
discriminative training (chain, sMBR) showing strength. A
discriminatively trained 5 layer G-LSTM was the best per-
forming acoustic model, with a WER of 19.2% (p < 0.05)
after 4-gram language model rescoring. The absolute best
performance achieved was 18.3% (p < 0.001) WER with
a system combination of the top two hypotheses from the
sequence trained G-LSTM models.
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