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Abstract

Modern speech recognizers rely on three core components: an
acoustic model, a language model, and a pronunciation lexi-
con. In order to expand speech recognition capability to low-
resource languages and domains, techniques to peel away the
expert knowledge required to craft these three components have
been growing in popularity. In this paper, we present a method
for automatically learning a weighted pronunciation lexicon in
a data-driven fashion without assuming the existence of any
phonetic lexicon whatsoever. Given an initial grapheme acous-
tic model, our method utilizes a novel technique for semi-
constrained acoustic unit decoding, which is used to help train a
letter to sound (L2S) model. The L2S model is then used in con-
junction with a Pronunciation Mixture Model (PMM) to infer a
pronunciation lexicon. We evaluate our method on English as
well as Lao and Haitian, two low-resource languages featured
in the IARPA Babel program.
Index Terms: lexicon learning, pronunciation modeling

1. Introduction
1.1. Previous Work

The cornerstone of modern day speech recognizers is the pro-
nunciation lexicon, which serves as the link connecting the
acoustic model and the language model. The lexicon is typically
handcrafted by expert humans, which is a costly and time con-
suming process. Methods to automatically infer high-quality
lexicons not only for under-resourced languages, but also new
domains in high-resourced languages, are growing in their ap-
peal. In one recent effort, Lu et al [1] assumed the existence of
a small seed lexicon, consisting of handcrafted phonetic pro-
nunciations for several thousand words. By building a L2S
model with this seed lexicon, the authors were able to gener-
ate candidate pronunciations for a 30,000 word lexicon. These
candidates were then pruned according to how well they fit the
acoustic training data, resulting in a lexicon nearly as good as
an expert-defined phonetic lexicon. McGraw et al. [2] assumed
the existence of an expert-created phonetic pronunciation lexi-
con which was used to train a letter to sound (L2S) model. This
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model was then used to generate a large number of new candi-
date pronunciations for each word in the recognizer’s vocabu-
lary, and a Pronunciation Mixture Model (PMM) was then ap-
plied to assign weights to those candidate pronunciations. Sim-
ilar approaches to these were performed by [3, 4].

The work most closely related to ours was performed by
Hartmann et al. [5] and Lee et al. [6], neither of whom utilized
an expert seed lexicon but rather assumed that utterance-level
orthographic transcriptions were available. The framework pre-
sented by Hartmann et al. first constructed a grapheme-based
recognizer, and then clustered the context-dependent grapheme
acoustic models into a new set of units. A phrase-based machine
translation model was applied to adapt the initial lexicon to bet-
ter fit the new acoustic units. The authors reported a 13% rela-
tive improvement in word error rate (WER) over the grapheme
baseline on the Wall Street Journal corpus. Lee et al. proposed a
Bayesian graphical model mapping orthographic transcriptions
to acoustics through several layers of latent hierarchy. Inference
within the model allowed the authors to recover a set of acous-
tic models, and a pronunciation lexicon. The authors reported
a 15% relative reduction in WER over a grapheme baseline for
an English weather query recognition task.

1.2. Motivation and Contributions

Many languages utilize orthographies that are phonetic to a
varying degree [7, 8]. Context-dependent systems model tri-
graphemes much in the same vein that phone-based recognizers
model triphones, typically improving upon context-independent
grapheme-based systems. While context-dependent modeling
no doubt benefits from its ability to model co-articulation of
sounds, it can also compensate to a certain degree for the sys-
tematic errors introduced by the invalid assumption that every
letter maps to its own unique phoneme. However, this compen-
sation is not perfect, as grapheme-based recognizers are often
more error prone than their phone-based counterparts. The free-
dom to do away with a pronunciation lexicon altogether gives
grapheme-based systems appeal and reduces the cost of deploy-
ing recognizers to new languages or domains.

This paper presents a data-driven method for constructing a
weighted pronunciation lexicon given some initialization, such
as a grapheme-based lexicon. We adopt a similar strategy to
[2], but with a twist - we do not assume the existence of a
phonetic lexicon which can be used to fit a L2S model. Our
method exploits a novel technique for hybridizing forced align-
ment and acoustic unit decoding for the purposes of training the
L2S model, given only utterance-level orthographic transcrip-
tions. The L2S model is then used to generate a set of candidate
pronunciations for each word seen in the training data, and the
PMM is applied to weight each pronunciation. Our experiments
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show substantial improvement over the grapheme baseline on
our English language task, closing 87% of the performance gap
between GMM-based triphone and trigrapheme systems, and
57% of the gap between a more advanced pair of systems. We
encounter more difficulty with two IARPA-Babel languages,
and provide some simple analysis as to why this might be the
case by introducing the LLG error rate, a novel measure of joint
confusion between the lexicon and language model.

2. Method Overview
2.1. Semi-Constrained Forced Alignment

In order to train the L2S model, we require training data in the
form of parallel sequences of graphemes and acoustic units. Of-
ten in practice a phonetic pronunciation lexicon is used to fit
the L2S model, but in the case of a grapheme-based recognizer
the pronunciation lexicon simply maps each grapheme to itself.
Hence, a L2S model trained on such data would be trivial and
not very useful for the purpose of generating novel pronuncia-
tions. We attempt to create a richer L2S model utilizing train-
ing data derived from a semi-constrained acoustic alignment
technique. We create an utterance-dependent decoding graph
for each training utterance which is similar to a forced align-
ment graph, but replaces every other word with a grapheme-
star finite-state transducer (FST). The motivation behind the de-
sign of this FST is that it anchors the acoustics to the transcrip-
tion, while still allowing the decoding path to explore alternative
acoustic unit sequences for some of the words in the utterance.

More explicitly, let W = w1, w2, . . . wn be the words
comprising the transcription of utterance U . Also let L(w)
represent the FST which only accepts the string of graphemes
spelling word w and writes its input symbols to its output.
Assuming H and C are the standard HMM state transition
and context-mapping FSTs defined by Kaldi [11], the forced
alignment FST for U can be written as H ◦ C ◦ F , where
F = L(w1)L(w2) . . . L(wn). Now, let P = S ◦ G, where S
accepts any sequence of graphemes and writes its input symbols
to its output, G is a language model over graphemes (a simple
bigram model trained on the graphemic lexicon), and ◦ denotes
the FST composition operator. To perform semi-constrained
forced alignment on utterance U , we decode with the graph
H ◦C ◦ F̂ , where F̂ = PL(w2)PL(w4)PL(w6) . . . PL(wn),
assuming in this case that n is even.

Given a collection of utterances and their transcriptions, we
construct the F̂ graph for each individual utterance and then
decode the acoustics to obtain a 1-best grapheme sequence. We
take each utterance’s decoded grapheme sequence and build a
pseudo-lexicon of the form g1, . . . , gm : s1, . . . , sn, where
g1, . . . , gm denotes an utterance’s transcription and s1, . . . , sn
the 1-best acoustic unit sequence. This pseudo-lexicon is then
used to train our L2S model. It should be noted that we produce
the acoustic unit sequences in terms of context-independent la-
bels, even though context-dependent acoustic models are used
for decoding. Other approaches [5] took care to avoid this extra
source of constraint, but our experiments on English demon-
strate improved performance despite this constraint.

2.2. Letter to Sound Modeling

One way to view the problem of constructing a lexicon is fit-
ting a distribution P (b|w) over pronunciations b for each word
w in the vocabulary. In order to tractably estimate P (b|w) for
each word in the vocabulary, we specify a finite support for each
word-specific distribution over pronunciations. To generate

these candidate pronunciations, we use a letter-to-sound (L2S)
model which can probabilistically map sequences of graphemes
to sequences of sound units. Specifically, we use the Bisani-Ney
joint sequence model [9], although any L2S model capable of
producing multiple pronunciations for a given word could be
applied. The full details of the Bisani-Ney model can be found
in [9], so we provide only a brief review of the essentials.

To model P(w, b), [9] employed a model whose funda-
mental unit, the graphone, was assumed to jointly generate
letters and sounds. Here, we restrict our attention to the sin-
gular case, in which a graphone may map at most 1 letter to
at most 1 sound. We also use the Bisani-Ney model to map
between graphemes representing letters and graphemes repre-
senting sound units; however, for consistency we will use the
word “graphone”. A singular graphone takes the form g =
letter : sound, although we allow the mappings letter : ε and
ε : sound to handle insertions and deletions. A sequence of
graphones uniquely specifies a sequence of letters and sounds,
but a joint sequence of letters and sounds may be associated
with many graphone sequences. For this reason, estimating an
n-gram language model over graphone units given parallel let-
ter/sound sequences requires the use of an EM algorithm, for
which [9] provides an open source implementation. Once an
n-gram model over graphones is trained, it can be represented
as a weighted FST that reads letter units and writes sound units.
Given a sequence of lettersw, theN -best paths through the FST
predict the N most probable pronunciations for w.

2.3. Pronunciation Mixture Modeling

Speech recognition is typically motivated by a “fundamental”
equation inspired by Bayesian signal recovery across a noisy
channel. Assuming an acoustic signal A was observed, the goal
of speech recognition is posed as finding the most likely se-
quence of words W ∗ = w∗1 , . . . , w

∗
n which gave rise to A. Via

Bayes’ Rule, this is often stated mathematically as

W ∗ = arg max
W

P (A|W )P (W ). (1)

P (A|W ) is often referred to as the acoustic model, and P (W )
the language model. HMM-based recognizers often assume
canonical pronunciations for the words in the recognizer’s lex-
icon, which specify the sequence of sub-word acoustic models
that are used to build an HMM for each word in the vocabulary.
To explicitly introduce stochasticity across a set of multiple pro-
nunciations that may be used for each word, we let B represent
all possible sequences of sub-word units. An utterance’s pro-
nunciation sequence is then defined asB = b1b2 . . . bn, bi ∈ B.
Assuming that a word’s acoustic realization is independent of
the word given its pronunciation, Eq. 1 then becomes

W ∗ = arg max
W

P (W )
∑
B∈B

P (A|B)P (B|W ). (2)

In practice, we use the Viterbi approximation and replace the
summation over all pronunciations with a maximization:

W ∗ = arg max
W

max
B

P (A|B)P (B|W )P (W ) (3)

Eq. 3 expresses how pronunciation probabilities can be ex-
plicitly included in the speech recognition search problem, al-
though we must still consider how to parameterize and es-
timate P (B|W ), which is where the Pronunciation Mixture
Model comes into play. Although [2] provides a more com-
plete theoretical treatment of the PMM, we present here the
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technique used in our experiments. First, given any ut-
terance, we assume that each word’s pronunciation is in-
dependent of the surrounding pronunciations, P (B|W ) =
P (b1|w1)P (b2|w2) . . . P (bn|wn). Further, we assume that for
each word w, P (b|w) is a categorical distribution with a finite
support which has been predetermined by computing the N-best
pronunciations for w according to the L2S model. We define
the PMM model parameters θb|w = P (b|w) and initialize each
to be proportional to the L2S model’s score for pronunciation b
givenw. We then form a lexicon Lwhich includes all candidate
pronunciations for all words in the vocabulary. Given existing
acoustic and language models, we use this new lexicon to per-
form forced-alignment of the training acoustics constrained by
their transcriptions. For each utterance, we reserve the N -best
list of phonetic paths from this alignment while also retaining
word boundaries. Normalizing the log-likelihoods across each
N -best list yields an approximation to the posterior probability
P (B|u,W ; θ) where u is the acoustic observation and W the
corresponding word transcription. This posterior can be used
to re-estimate the PMM model parameters θ. Given a training
set (which may be the same set used to train the acoustic and
language models) of M utterances D = {ui,Wi}, where ui
is the acoustic observation for utterance i, and Wi is the corre-
sponding word transcription, the EM update equations for ML
estimation of θ taken from [2] are:

M̄θ[w, p] =

M∑
i=1

∑
B∈Bi

P (B|ui,Wi; θ) ·M [p, w,Wi, B] (4)

θ∗p|w =
M̄θ[w, p]∑

p′∈B M̄θ[w, p′]
(5)

where Bi is the set of unique pronunciation paths appearing in
the N -best list for the ith utterance, and M(p, w,Wi, B) is the
number of times wordw was aligned with pronunciation p in the
N -best list for the ith utterance. Note that we do not re-decode
the data between subsequent EM iterations, but rather adjust the
posteriors in each N -best list according to the updated θ.

3. Experiments
3.1. Corpora

Our English language experiments were performed on the
Jupiter corpus [10]. This corpus is comprised of telephone
queries to an automated system providing weather informa-
tion. The queries are relatively short, on average consisting of
6 words, and covering a vocabulary of 1,805 unique words. We
use an 80 hour set of queries to train our acoustic and language
models, as well as the relearned lexicon. For testing, we use
a 3,497 utterance test set, consisting of 3.18 hours of speech.
For our Haitian and Lao experiments, we utilized data from the
IARPA Babel Project. Both systems were trained on the Lim-
itedLP data, from respective releases IARPA-babel203b-v2.1a
and IARPA-babel201b-v0.2b. These training sets each contain
approximately 10 hours of conversational telephone speech.
The vocabulary sizes for each of these languages are consider-
ably larger than the Jupiter vocabulary, with 6,361 unique words
appearing in the Lao training data, and 4,838 unique words in
the Haitian training set. For testing, we use the 10 hour conver-
sational development sets that accompany the training sets.

3.2. Experimental Conditions

We utilize the Kaldi speech recognition toolkit [11] to con-
struct the HMM-GMM recognizers used in our experiments.

Our baseline English system was trained using the standard 39-
dimensional MFCC feature representation, with cepstral mean
and variance normalization applied on a per-utterance basis. We
first flat-start trained 26 context-independent grapheme acous-
tic models, then used these models to bootstrap the training of a
context-dependent tri-grapheme system. The tri-grapheme sys-
tem was trained with 1300 context-dependent states, with ap-
proximately 8 Gaussians per state. In our results, we refer to
this system as “GMM”. Finally, we stacked the 13-dimensional
MFCC feature vector belonging to each frame with its previ-
ous three and subsequent three neighboring feature vectors, and
then applied LDA and MLLT to the results, bringing the final
feature dimension down to 40 [12]. We then retrained the acous-
tic models using these features, using the “GMM” system for
initial bootstrapping. In our results, we refer to this system as
“LDA”. For decoding, a trigram language model with modified
Kneser-Ney smoothing was used.

The Haitian and Lao systems were trained using PLP fea-
tures with the addition of a pitch estimate and probability of
voicing as two extra features [13]. Conversation-level mean
and variance normalization was applied to these features, which
were then stacked with delta and double delta features to train
context-independent grapheme acoustic models, which were
then used to bootstrap the training of context-dependent acous-
tic models. Finally, the 15-dimensional frame feature vectors
were stacked with their previous 4 and subsequent 4 frames
before applying LDA and MLLT to reduce their dimensional-
ity down to 40. The acoustic models were retrained on these
features to yield the system referred to as “LDA” in our ex-
periments. For both languages, we used 4-gram Good-Turing
smoothed language models during decoding.

We applied our lexicon relearning method on top of the al-
ready retrained recognizers, referred to as “RL” in our results.
After performing semi-constrained acoustic unit decoding, we
trained a unigram graphone model which was used to gener-
ate approximately 30 candidate pronunciations per word. We
then applied the PMM, using N = 10 for the N -best list size.
Lastly, we renormalized the pronunciation weights such that the
highest scoring pronunciation for each word received a weight
of 1.0, and then threw away any pronunciation with a weight
less than 0.1. We chose this method over normalizing each
word’s set of pronunciations to a probability distribution be-
cause the latter penalizes words with more pronunciations (un-
der the Viterbi approximation used in decoding), and we have
found the former to work better in practice. After a lexicon has
been relearned, we can use it to re-align the training data with
the new pronunciations and then retrain the acoustic model set,
referred to as “RAM” in our results.

3.3. Results and Discussion

Our experimental results are enumerated in Table 1. Our lexicon
re-learning method provided significant improvements for the
English language systems, closing 86% of the gap between the
triphone GMM system and the tri-grapheme GMM system. The
extra discriminative power afforded by the LDA features shrunk
the WER gap between the triphone and tri-grapheme systems
to only 0.53% absolute, but relearning the lexicon and acoustic
models was still able to bridge 57% of this gap. For the curious,
a few example utterances from the semi-constrained acoustic
unit decoding step are displayed in Table 2, and a few example
pronunciations learned are shown in Table 3.

Both the Lao and Haitian recognizers began with very high
WERs. Relearning the Haitian lexicon provided a small 0.2%
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Lang System WER (%)
Eng. Gr. GMM 10.6
Eng. Gr. GMM + RL 9.9
Eng. Gr. GMM + RL + RAM 9.4
Eng. Ph. GMM 9.2
Eng. Gr. LDA 8.5
Eng. Gr. LDA + RL 8.4
Eng. Gr. LDA + RL + RAM 8.2
Eng. Ph. LDA 8.0
Lao Gr. LDA 69.9
Lao Gr. LDA + RL 72.6
Lao Gr. LDA + RL + RAM 71.5
Hait. Gr. LDA 73.6
Hait. Gr. LDA + RL 73.4
Hait. Gr. LDA + RL + RAM 73.9

Table 1: Results across our three languages. “Ph.” denotes a
phonetic system, and “Gr.” denotes a graphemic system.

transcript sound unit sequence
hellojupiter w o u l o j u p i t e r
nicefrance s n e a s e f r a n c e

rhodeisland r o u d a i s l a n d
iwantedsouthtexas w o w w a n t e d s o u t t e x a s

Table 2: Examples the semi-constrained acoustic unit decoding
on Jupiter. Bold graphemes correspond to the parts of the path
that went through a grapheme-star FST.

absolute improvement to WER, but after retraining the acoustic
models the system’s performance became worse than the base-
line. For Lao, the relearned lexicon was a detriment to WER
before and after relearning the acoustic models, getting several
percentage points worse. We performed some simple analysis
as to why our lexicon learning scheme fared much better on
English versus the Babel languages. To this end, we defined a
simple metric which we call the LLG error rate. To compute
this, we first construct the FST S = inv(L) ◦ L ◦ G, where L
is a lexicon FST mapping sound unit sequences to words, G is
a language model, and inv(L) represents the inverse FST of L
which maps words to sound unit sequences. Given an utterance
whose transcript contains the word sequence W , we construct
the FST T which simply writesW to its output tape. The 1-best
path through T ◦S yields an output sequence of words Ŵ , with
which we compute a standard word error rate against the refer-
ence, W . We apply this to each test set, omitting any utterances
with out-of-vocabulary words, and accumulate all of the errors
to form a final LLG error rate. The intuition behind the LLG
error rate is that it provides an approximation as to how con-
fusable the pronunciations in the lexicon are with one another
under the constraints of the language model, without directly
taking into account an acoustic model or any acoustic data.

Table 4 shows that both Babel languages begin with sig-
nificantly higher LLG error rates than English, and that the ex-
pansion of the lexicon introduces enough new pronunciations to
significantly increase the LLG error rate. The table also shows
that the language model perplexities of both Babel languages’
test sets were far higher than that of the English set. It should
be noted that the English system was trained on approximately
8 times as much data as either of the Babel languages, and the
speech was not conversational in nature as was the case with
the Babel languages. That said, our results suggest that expand-

word weight pronunciation
switzerland 1.0 s w i t s e l a n d
switzerland 0.88 s w i t s e r l a n d
switzerland 0.34 s w i t z e l a n d
switzerland 0.19 s w i t s e r l a n
prediction 1.0 p r d i c t i o n
prediction 0.31 p r e d i c t i o n

toronto 1.0 t o r o n t o
toronto 0.16 t r o n t o
toronto 0.14 t o r o n o
toronto 0.14 t o r o n t a

Table 3: Example pronunciations learned for Jupiter.

Lang LLG LLG-R PPW PPL
Eng. 0.07 1.63 3.29 8.43
Lao 1.54 8.36 1.26 167.16
Hait. 7.46 31.04 1.46 146.35

Table 4: LLG error rates for the grapheme lexicons (LLG) and
relearned lexicons (LLG-R). Also shown are the average num-
ber of pronunciations per word (PPW) for the relearned lexi-
cons, and language model perplexities on the test sets (PPL)

ing the lexicon can create significantly more ambiguity for the
recognizer under very weak language model constraints.

4. Conclusion
We have presented a method for automatically learning an ex-
panded pronunciation lexicon given an initial grapheme rec-
ognizer, without assuming the existence of any expert pro-
nunciations. We have demonstrated significant improvement
on English, but encountered more difficulty when faced with
resource-limited languages. However, it is possible that the re-
learned lexicons could provide some benefit for a spoken term
detection task. We have also introduced the LLG error rate, a
measure of joint confusion inherent in a lexicon and language
model. While this measure does not appear to be directly cor-
related with word error rate, it seems to provide some insight
as to how well a language model can overcome pronunciation
ambiguity. It is possible that the LLG error rate could be used
as an analytic tool for determining what kinds of errors can be
attributed to the acoustic models or to the lexicon and language
models, a topic which we believe merits further investigation.

In a resource-constrained scenario, discriminative training
of the PMM may also prove to be useful. It is also possible that
incorporating a more explicit prior distribution over pronuncia-
tions into the PMM estimation would prevent spurious pronun-
ciations from being learned for words with a limited number of
training examples; a prior which placed additional weight on the
graphemic pronunciation of each word would be a good place
to start. Although we have applied our method to graphemic
systems in this paper, it would be possible to relearn any kind
of lexicon in the manner we describe here, be it phonetic or per-
haps in terms of a set of unsupervised units. We leave this, as
well as the aforementioned investigations, to future work.
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