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Abstract
Arabic has an ambiguous mapping between words and pronun-
ciations, making it a deep orthographic system. This ambiguity
can be resolved through diacritics, which if displayed, would
compose 30% of characters in a text. We investigate the dif-
ferent dimensions of lexical modeling, covering diacritics, pro-
nunciation rules, and acoustic based pronunciation modeling.

We show the impact of explicitly modeling the different
classes of diacritics (short vowels, geminates, nunnations). We
further show that a phonetic lexicon, derived by applying simple
pronunciation rules to diacritized words, offers the best gains
in ASR performance. Finally, deriving pronunciations from
acoustics, yields improvements, beyond a canonical lexicon.
Index Terms: automatic speech recognition, Arabic, diacrit-
ics, pronunciation rules, language model, lexical model, joint
sequence model, pronunciation mixture model.

1. Introduction
Arabic orthography presents a challenge when working in the
area of speech and language processing. It has a deep ortho-
graphic system, with an ambiguous mapping between words
and their phonetic realization. Although the Arabic script may
include diacritics to inform the reader on the underlying pro-
nunciation of a word, it is rarely used. Thus, in Arabic ASR,
lexical modeling becomes a non-trivial pursuit.

The classical way of deriving Arabic word pronunciations
is by parsing the text with NLP tools to diacritize words. Dia-
critized words generally provide a consistent mapping between
graphemes and phonemes. Rather than using this normative
technique of determining word pronunciations, we would like
the acoustics to inform us about the observed pronunciations of
a word. A data driven approach to lexical modeling allows for
words to be modeled based on observed pronunciations, and ac-
commodates words that may not exist in an NLP database due
their rarity, colloquial origins, or foreign nature.

The rest of this paper proceeds with a literature review (Sec.
2) highlighting the area open for exploration, followed by a
background on the nature of the Arabic language, and theory
of the applied techniques (Sec. 3). Next, we establish a frame-
work (Sec. 4) to evaluate the effects of diacritics (Sec. 5.1), and
pronunciation rules (Sec. 5.2), in Arabic ASR performance. We
then explore the utility of a stochastic lexicon built using a gen-
erative framework of candidate pronunciations (Sec 5.3). We
conclude with future directions of this work (Sec. 6).

2. Related Work
The existing literature indicates that there is not a standard ap-
proach towards lexical modeling for Arabic. Automatically dia-
critized (D) graphemic lexicons are commonly used [1, 2, 3, 4].
Less common is work like Billa et al. that uses a nondia-

critized (ND) lexicon [5]. While, Afify et al. experiment with
graphemic lexicons that are both D and ND [1].

A few researchers choose to apply pronunciation rules, such
as Messaoudi et al., Vergyri et al., and Mangu et al. [6, 7, 8].
The first two use their own rules, with Mangu et al. applying
the rules of Biadsy et al. Biadsy et al. investigate pronunci-
ation rules in the area of Arabic ASR [9], which we observed
to be an uncommon research endevour. Some work exists on
phonetic modeling for applications in Modern Standard Ara-
bic (MSA) Text-To-Speech (TTS) systems, namely Ahmed and
El-Imam [10, 11]. We find that investigations on the impact
of diacritics and pronunciation rules are rarely conducted and
compared. This provides good motivation for investigating the
different lexical modeling techniques under a single setup.

There exists some work in the domain of Arabic ASR that
uses stochastic lexicons. Mangu et al. build a stochastic lexicon
based on confidence scores for each D the MADA+TOKAN
toolkit hypothesizes, and the pronunciation returned by the
decoder [12, 13]. Vergyri et al. compare the use of non-
stochastic and stochastic lexicons. Pronunciation probabili-
ties were smoothed empirical frequencies of pronunciations re-
turned by the decoder. WER improved when using a stochastic
lexicon [7]. Al-Haj et al. also investigate the use of stochastic
lexicons for dialectical Arabic, deriving the pronunciation prob-
abilities in the same manner as Vergyri et al. [14]. In all cases,
pronunciations were derived from an existing database.

Given previous work, we seek to establish a more system-
atic framework for evaluating the impact of modeling diacrit-
ics, applying pronunciation rules, and deriving pronunciations
acoustically, beyond the canonical. All under a single setup.

3. Background
3.1. Arabic Language

To discern the underlying identity (pronunciation) and meaning
of a word, diacritics are inserted in Arabic orthography. They
are most commonly employed in texts for those learning to read,
such as children, and older texts whose style may be unfamil-
iar, or sensitive to ambiguity. Diacritics are expressed in their
Romanized version (using Buckwalter transliteration) as in Ta-
ble 1. They are organized based on their characteristic for rep-
resenting short vowels, geminates (‘twinning’/elongation of a
sound), and nunnation (pronouncing /n/ at the end of words).

3.2. Joint Sequence Modeling

The task of converting graphemes to phonemes is formalized as

b∗ = argmax
b∈B

P (w, b) (1)

where the most likely pronunciation b, in the set of phonetic
units B, is sought for the orthographic form w in the set of
graphemes W .
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Table 1: Diacritics in the Arabic language in both Buckwalter
and Arpabet representation with examples of their use.

Category Short Vowels
Diacritic a u i o
Arpabet /ae/ /uh/ /ih/ null
Example kataboti /k ae t ae b t ih/ - you wrote.
Category Geminates
Diacritic ∼ (tilde)

Example kataba /k ae t ae b ae/ - he wrote.
kat∼aba /k ae t t ae b ae/ - he made to write.

Category Nunnations
Diacritic F K N
Arpabet /ae n/ /uh n/ /ih n/
Example kitAban /k ih t ae: b ih n/ - a book.

Joint sequence models (JSM) represent the relationship be-
tween graphemes and phonetic units by constructing an M -
gram over joint units [15]. In a joint unit, any grapheme or ε
(empty) character may map to any phoneme or ε character, with
ε to ε being redundant. Below is a sequence of 6 joint units of
grapheme-phoneme pairs for the word Alshms (the sun).

Alshms

/Ash aems/
=
A

A

l

ε

sh

sh

ε

ae

m

m

s

s

We use Bisani and Ney’s implementation to model joint se-
quences over 5-grams, a higher M -gram would produce too
constrained a model [15]. We map between grapheme L and
phoneme R with a 0 or 1 input-output mapping (L = R = 1).
We generate K = 50 candidate pronunciations for each word.

3.3. Pronunciation Mixture Modeling

Using the Pronunciation Mixture Modeling (PMM) framework
developed by McGraw et al. [16], we are interested in learning
weights of different word pronunciations for any given word.
The PMM is parameterized with θ = P (b,w), assuming that
there is a mapping between word w and baseform b. EM is
used to update these parameters using the data (uN

1 , w), with
utterance u. The log likelihood of the data is formalized as

L(θ) =

N∑
i=1

log p(ui,w; θ) =

N∑
i=1

log
∑
b∈B

θw,bp(ui|w, b)

(2)
In this paper, pronunciations are scored over an N -best list

of 100 hypotheses, and are discarded if less than T = 0.01.

4. ASR System
The Kaldi Speech Recognition Toolkit was used to build the
ASR system with triphone GMM acoustic models [17]. A tri-
gram language model was built using modified Kneser-Ney dis-
counting with the SRILM Toolkit.1 The transcripts were auto-
matically diacratized using the MADA+TOKAN Toolkit [12].

We conduct experiments using the GALE Broadcast Con-
versation Phase 1 and 2 dataset.2 Using only the data la-
beled ‘report’ which is mostly scripted speech in MSA. The
training set is 70 hours in duration, with the Development
(Dev) and Evaluation (Eval) set having 1.4 and 1.7 hours in

1A. Stolcke, SRILM - An Extensible Language Modeling Toolkit
2LDC2013S02,LDC2013S07, GALE Phase 2 Arabic Broadcast

Conversation Speech Part 1 and 2, Linguistic Data Consortium.

duration. The Dev set contains utterances from the show
(ALAM WITHEVENT) while the Eval set is from the show
(ARABIYA FROMIRAQ). The transcripts provided are not di-
acritized. For JSM we use manually diacritized text from two
other sources, Nemlar broadcast news [18], and the Quran3.

Triphone context-dependent GMM-HMM models were
used with MFCC+LDA+MLLT features, and applying fMLLR
[19, 20, 21]. These models were seeded from monophone mod-
els that were built using a flat start initialization according to
the standard recipe from the Kaldi Toolkit. We use 4,000 HMM
states, and 128,000 GMMs.

In order to build a lexicon that captures the underlying pro-
nunciation of a ND word, we diacritize the GALE and Nemlar
transcripts using the MADA+TOKAN toolkit [12]. Specifically,
MADA+TOKAN Toolkit 3.2 with SAMA 3.1 on default.

Only text from the training set has been used to build the
language model. The text contains 500K words with a vocab-
ulary of 61K words. Unless otherwise stated, language models
used are trigrams with modified Knesser-Ney discounting built
with the SRILM toolkit. The Out-Of-Vocabulary (OOV) rate is
5.27% on the combined Dev (5.23%) and Eval (5.31%) sets.

Although we investigate lexicons built from several
sources, all map ND words to phonetic representations.

5. Experiments
5.1. Diacritics

We first explore the influence of diacritics on ASR performance.
The lexicons we investigate are grapheme-based, and map the
ND words from the training text to their D form. We compare
with a baseline ND lexicon that models the word as is, as well as
four configurations of the three classes of diacritics. The D form
is based on the top MADA+TOKAN hypothesis. We observed
that diacritics compose ∼30% of characters in the dataset.

Table 2: Example Entries in Lexicon.
Lexicon Vocab Grapheme
No Diacritics (ND) ktb k t b

ktAb k t A b
Short Vowels Only ktb k a t a b a

ktAb k i t A b
No Geminates ktb k a t a b a

ktAb k i t A b
ktAb k i t A b N

No Nunnations ktb k a t a b a
ktb k a t∼ a b a
ktAb k i t A b

All Diacritics (D) ktb k a t a b a
ktb k a t∼ a b a
ktAb k i t A b
ktAb k i t A b N

Table 2 displays examples of each format with instances of
multiple entries for a given word. This shows that the inclu-
sion of certain diacritics may produce multiple pronunciations
per word. For example, the word ktb when diacritized can be
realized as /k a t a b a/ and /k a t∼ a b a/. The short vowels
and geminates produces different words, which in turn are pro-
nounced differently. Otherwise it would only be modeled as /k
t b/, obscuring the underlying pronunciation.

ND. This lexicon maps every word in the vocabulary of the
ND training text to its grapheme form.

3http://tanzil.net/download, Tanzil-Quran.
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Table 3: Impact of Modeling Diacritics in Lexicon on ASR Performance.
Lexicon PPW # phones Freq. in text (%) Dev WER(%) Eval WER(%) Sig. at p <
Baseline - ND 1 36 - 24.2 25.1 -
D - Short Vowels only 1.25 39 25 23.4 24.1 0.007
D - No geminates 1.28 42 3 22.6 23.2 0.001
D - No nunnations 1.25 69 1 22.8 23.9 0.001
All D 1.28 72 29 22.6 23.4 0.001

D - Short Vowels Only. This lexicon only models short
vowels {a, u, i}. It does not model nunnations {F, K, N} or
geminates {b∼, f∼, l∼, . . .}.

D - No Geminates. Models short vowels and nunnations
{a, u, i, F, K, N}, but not geminates {b∼, f∼, l∼, . . .}.

D - No Nunnations. This lexicon models short vowels and
geminates {a, u, i, b∼, f∼, l∼, . . .}, but not nunnations {F, K,
N}. Note that we model the word kat∼aba in its grapheme form
as / k a t∼ a b a/ rather than / k a t ∼ a b a/ or / k a t t a b a/.

All D. Every ND word in the training text is mapped to its
D form. The diacritics (short vowels, geminates, nunnations)
are modeled as {a, u, i, F, K, N, b∼, f∼, l∼, . . .}.

5.1.1. Baseline

We use the ND lexicon as the baseline, with a WER of 25.1%
and OOV of 5.31% on the Eval dataset. This seems to be a rea-
sonable starting point, as the WER value falls within the range
of results found in the literature, such as Xiang et al. and Ver-
gyri et al. [3, 22]. This is considering the smaller size (70 hours)
of our training corpus compared to 150 and 1000 hours, using
an ND lexicon, similar nature (Arabic Broadcast News) of the
dataset, similar vocabulary size (61K), similar OOV, with some
differences in acoustic modeling. Xiang et al. does not detail
the models they used, however Vergyri et al. describe several
techniques, using MFCC, PLP, and MLP features, as well as
fMPE training.

5.1.2. Results

Table 3 displays the results of training and decoding using these
lexicons that vary only in diacritics. Inserting acoustic units in
the lexicon to model diacritics outperforms the baseline by 1.7%
absolute WER. This shows that modeling diacritics as part of
consonants ‘works’, but is not as effective as diacritized lexicon
entries. Even partially including diacritics helps.

Short vowels and nunnations provide an almost equivalent
gain in ASR performance. Short vowels result in a 1.0% abso-
lute WER improvement over the baseline, modeling nunnations
leads to a 1.9% absolute WER improvement over the baseline.
Geminates produce an absolute WER improvement of 1.2%
when modeled with short vowels. Geminates help performance
when nunnations are missing, but offer no gain when nunna-
tions are modeled. There is actually a loss when geminates are
modeled with other diacritics, leading to a 1.7% absolute WER
improvement rather than a 1.9% when not modeling geminates.

Overall, the combined effect of modeling the different
classes of diacritics is greater than modeling its parts. How-
ever, geminates seem to have a negative impact when combined
with all other diacritics. All results were found to be statistically
significant with p < 0.007, using MAPSSWE.4

4N.S.R.S.Toolkit, Speech Recognition Scoring Toolkit, 2001.

5.2. Pronunciation Rules

Intuitively, there are many graphemes that may correspond
to multiple phonemes, with various realizations of these
phonemes, where it would be more useful to include this in-
formation as additional acoustic units in the lexicon. We exper-
iment with pronunciation rules from the literature by Ahmed,
El-Imam, and Biadsy et al. under a single setup [10, 11, 9].

The lexicon maps the ND vocabulary from the training text
to their D form after the alterations introduced by pronunciation
rules. Thus the entries are composed of either phonemes or
phones depending on the rules applied.

Rules I by Ahmed [10] was originally developed for MSA
TTS systems. They cover glottal stops, short vowels, coartic-
ulation of the definite article Al, nunnation, diphthongs, word
ending p (/t/), as well as phones in regular, pharyngealized,
and emphatic contexts, a few geminates, aspirated phones, and
retroflexed vowels. Cross-word rules were not implemented.

Rules II by El-Imam [11] was also developed for MSA
TTS systems, and covers glottal stops, short vowels, coartic-
ulation of the definite article Al, nunnation, diphthongs, pha-
ryngealized vowels and non-emphatic consonants, a few rules
for unvoiced stops, while ignoring geminates.

Rules III by Biadsy et al. [9] describes rules for repre-
senting glottal stops, short vowels, coarticulation of the definite
article Al, nunnation, diphthongs, word ending p (/t/), and case
endings, while ignoring geminates.

5.2.1. Results

After building each lexicon according to their pronunciation
rules, training their corresponding acoustic models, and then de-
coding with that same lexicon, the results are as recorded in Ta-
ble 4. We take the baseline, as before, to be the ND graphemic
lexicon assessed over the Eval data. All lexicons perform better
than the baseline, with two out of the three performing better
than the D graphemic lexicon.

The poorest performing lexicon is that based on Rules I. It
performs better than the baseline by 1.1% absolute, but it does
not match that of the D graphemic lexicon. This may be due to
data sparsity when modeling the acoustics of these phones.

The other two rule-based lexicons fair better. Rules II
slightly outperforms the D graphemic lexicon with a 1.8% ab-
solute WER improvement over baseline. Rules III performs the
best with a 2.4% absolute WER improvement. Interestingly,
Rules III manages this with the smallest number of phones.

Overall, it would seem that it hurts to model phones too
finely with the data size we are working with (70 hours). Simple
rules that attempt to capture coarticulation in speech, and ignore
sparser data such as geminates, seem to be most effective. All
results were found to be statistically significant with p < 0.004.
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Table 4: Impact of Lexicon Pronunciation Rules on ASR Performance.
Lexicon PPW # phones Dev WER(%) Eval WER(%) Sig. at p <
ND 1 36 24.2 25.1 -
D Grapheme 1.28 72 22.6 23.4 0.001
Rules I - Ahmed [10] 1.27 135 22.9 24.0 0.004
Rules II - El-Imam [11] 1.27 63 22.4 23.3 0.001
Rules III - Biadsy et al. [9] 1.85 34 22.3 22.7 0.001

Table 5: Impact of Stochastic Lexicon on ASR Performance.
Phonetic Lexicon JSM Vocab (PPW) PMM Lex. PPW Dev WER (%) Eval WER (%) Sig. at p <
Baseline - Rules III - 1.85 22.3 22.7 -
GALE + MADA D - all prons - 1.57 20.9 22.4 0.254
GALE + MADA D - top prons 61K (1.28) 2.05 20.5 22.3 0.407
GALE + MADA D - all prons 61K (5.42) 2.02 20.5 22.0 0.026
Nemlar + manual D 39K (1.56) 2.05 20.9 22.5 0.159
Nemlar + MADA D - top prons 36K (1.29) 2.02 20.2 22.2 0.689
Quran + manual D 15K (1.18) 1.93 22.6 23.9 0.001
Candidate pronunciations generated using JSM. M = 5, L = R = 1, K = 50, N = 100, T = 0.01.

5.3. Acoustic Based Pronunciation Modeling

We are interested in evaluating the performance of a lexicon that
allows for a less constrained phonetic representation of words.

We start by using the candidate Ds available from
MADA+TOKAN Toolkit, to build a list of candidate pronun-
ciations. We then learn a stochastic lexicon where a mixture of
weights are assigned to these candidate pronunciations.

From a 61K vocabulary, the word database of the
MADA+TOKAN Toolkit contains 330K potential Ds (pronun-
ciations). Any given word in the seed lexicon will have a Pro-
nunciation Per Word (PPW) of 5.42, with any given word in the
text having a PPW of 6.73.

We take this a step further, and reduce our reliance on can-
didate pronunciations available from NLP tools and databases.
We generate candidate pronunciation from JSMs that were
trained on some Arabic lexicon, which include the GALE,
Nemlar, and Quran corpora. Weights were then assigned to
these candidates that most closely represent the observed pro-
nunciations in the acoustics of the speech data. This was done
using the PMM framework [16].

The acoustic models used for this set of experiments were
initially built using the best performing setup from the previous
section. This is the lexicon that incorporates pronunciation rules
from Biadsy et al., that resulted in a WER of 22.7% on the Eval
set. This was also taken as the baseline.

5.3.1. Results

All lexicons performed better than the baseline except one. The
PMM framework helped improve performance by producing a
stochastic lexicon, while JSM, provided an additional benefit.
Results are displayed in Table 5.

Evaluating using a stochastic lexicon that was based on the
D database of the MADA+TOKAN toolkit led to an absolute
WER improvement of 0.3% over the baseline. An extension
of this, generating candidate pronunciations from JSMs, pro-
vided an additional absolute WER improvement of 0.7% over
the baseline. This seems to indicate that allowing for pronunci-
ations beyond the canonical, better accommodates the pronun-
ciations observed in the acoustics.

Using other sources (except one) to train the JSM, also pro-
vided an absolute WER improvement over the baseline ranging
between 0.2% and 0.5%. We also observe that there may be a
limit as to the type of sources that can be used for lexical mod-

eling. Using the Quran negatively affected performance, which
may be due to two reasons, the smaller size of the training lex-
icon, and the differing nature of the Arabic that exist between
the source lexicon, and testing corpora.

Overall, we observe benefits to modeling a lexicon stochas-
tically under the PMM framework, and allowing for broader
pronunciation candidates. This indicates the potential for skip-
ping the time consuming step of pre-processing Arabic text us-
ing NLP tools to provide diacritics.

6. Conclusions & Future Work
We have presented a systematic framework to evaluate the ef-
fects of modeling the different classes of diacritics in the lexi-
con. We also assessed the impact of different applying pronun-
ciation rules that are available in the literature. We found that
modeling short vowels and nunnations helped performance, ig-
noring geminates. We also observed that simple rules helped
boost performance, rather than attempting to model more nu-
anced phenomena. Building on these results, we proceeded to
show the benefits of using a stochastic lexicon that models a
mixture of pronunciations based on the acoustics. The best per-
formance came when potential pronunciations were generated
by JSMs, and then scored based on the acoustics through the
PMM framework, loosening the constraint of using a canonical
set of pronunciations for lexical modeling.

This paper establishes a trajectory to further explore de-
riving pronunciations from speech, specifically, to derive di-
acritizations of words from the acoustics. This could poten-
tially allow us to discern the semantics in speech, skip the pre-
processing of Arabic text with NLP toolkits, and perform more
accurate acoustic modeling. This work can also be used to ex-
plore lexical modeling of Arabic dialects, where a lexical gold-
standard is lacking, and NLP is not an option.

We are currently applying acoustic-based data-driven pro-
nunciation modeling techniques on Arabic data other than
MSA. An area which would most benefit, since no NLP in-
formation, such as MADA+TOKAN, exists, and where human
annotation is not feasible.
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