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ABSTRACT

This paper presents initial data collection and language un-
derstanding experiments conducted as part of a larger ef-
fort to create a nutrition dialogue system that automatically
extracts food concepts from a user’s spoken meal descrip-
tion. We first summarize the data collection and annotation of
food descriptions performed via Amazon Mechanical Turk.
We then present semantic labeling experiments using a semi-
Markov conditional random field (CRF) that obtains an F1
test score of 85.1. Finally, we report food segmentation exper-
iments that explored three methods for associating foods with
their corresponding attributes: a generative Markov model,
transformation-based learning, and a CRF classifier. The CRF
performed best, achieving an F1 test score of 87.1.

Index Terms— Data collection, Semantic tagging, CRF,
Markov model, Transformation-based learning

1. INTRODUCTION

Existing approaches for the prevention and treatment of obe-
sity are hampered by the lack of accurate, low-burden meth-
ods for self-assessment of food intake, especially for hard-to-
reach, low-literate populations [1, 2]. For this reason, we have
begun to explore whether speech understanding and dialogue
technology can enable efficient self-assessment of energy and
nutrient intake. We are interested in studying whether speech
can lower user burden compared to existing self-assessment
methods, whether spoken language descriptions of food in-
take can accurately quantify caloric and nutrient intake, and
whether dialogue can efficiently and effectively be used to
ascertain and clarify food properties, perhaps in conjunction
with other modalities.

In this paper, we describe our current progress in the ex-
traction of food concepts from a user’s spoken meal descrip-
tion (e.g., extracting “a bowl of Kellogg’s cereal” from the
food log “This morning for breakfast I had a bowl of Kel-
logg’s cereal”). Specifically, we focus on the crowdsourced
data collection and annotation we have performed in order
to create an initial repository of semantically annotated food
logs. We then describe the experiments we have conducted
for the tasks of semantic labeling and segmentation on these
data. The understanding component forms part of a larger nu-

trition logging prototype whose current interface displays the
output of a speech recognizer given the user’s spoken input
utterance, along with color-coded semantic tags (e.g., quan-
tity, brand, description, etc.) associated with particular word
sequences. The segmented food concepts are then shown in
matrix form in a table along with potential matches to a nutri-
tional database containing over 20,000 foods from the USDA
and other sources.

In the remainder of this paper, we begin by describing
the crowdsourcing methods we have developed and deployed
on Amazon Mechanical Turk (AMT) for data collection and
annotation [3]. Section 3 provides details on the language
understanding techniques we have explored, and Section 4
reports experimental results. Finally, Section 5 concludes and
describes our future plans.

2. DATA COLLECTION

We deployed three phases of experiments on AMT in or-
der to crowdsource our data collection and annotation. The
first phase involved the collection of food diaries, where we
prompted Turkers to write a description of a meal as they
would imagine describing it orally. The diaries were then
tokenized and used as input for the second phase, shown in
Figure 1, where we asked users to label individual food items
within the diaries. The third phase combined the food diaries
with their food labels and prompted Turkers to label the con-
cepts associated with a particular food item (see Figure 2).

Fig. 1. The AMT task for labeling foods in a meal description.

After the initial round of data collection, we noted that
Turkers were producing food diaries of lower quality than we
desired. In order to improve the descriptions, we required
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Fig. 2. The AMT task for labeling properties of foods.

the food diaries to pass a series of checks before submission.
Our algorithms address several common trends we identified
among low-quality diaries.

Often, a single entry was submitted numerous times, re-
sulting in semantically identical data. Our solution was to
generate a corpus of submitted responses and disallow repeat
submissions. In addition, low-quality descriptions often con-
tained few words, so we required diaries to consist of at least
four words. Another attempt to outwit the checker involved
using repetition within a diary (e.g., “a a a a”). Our solution
to this challenge was to prevent diaries from containing more
than 60% repetition. Finally, due to extensive spelling errors,
for submission we required at least 60% of the words in the
description to match entries in an English dictionary.

We collected and labeled 1,302 breakfast diaries, which
we used to train our models. The data were tokenized by
the European Parliament Proceedings Parallel Corpus tok-
enizer [4]. We used the AMT label for a token if at least a
threshold of four out of five Turkers labeled the token as a
food item or if three out of five Turkers labeled the token as
the same attribute. The thresholds were selected by compar-
ing the performance of the resulting model trained on these
labels, as shown in Table 1. Every tenth query was added to
the test set (for a total of 131 test queries), while all other
queries are part of the training data (1,173 training queries in
total). The histogram in Figure 3 shows that most food diaries
contain three, four, or five foods. Turkers tend to have high
agreement when labeling foods and quantities, but there are
more conflicts among brands and descriptions.

To ensure consistency between the AMT data and the rec-
ognized food diaries in the deployed nutrition system, we cre-
ated a data pre-processing step to normalize the tokenization
and punctuation. Since the recognizer results include apos-
trophes and percent signs, but no commas or periods, we re-
moved all punctuation except apostrophes and percents from
the labeled data. In addition, the text displayed in the nutrition
system does not split punctuation into separate tokens, so we
combined punctuation tokens with the previous word tokens.

Threshold Mean F1 Variance St. Dev.
1 78.75 2.21 1.49
2 84.05 2.38 1.54
3 84.58 2.81 1.68
4 83.74 1.01 1.01
5 76.80 2.78 1.67

Table 1. Labeling model’s 10-fold results (i.e., mean F1, vari-
ance, and standard deviation) for different thresholds of Turk-
ers in the property labeling task. The threshold of three Turk-
ers achieves the highest mean F1 score (shown in bold).

3. METHODS AND EXPERIMENTS

The language understanding component of the nutrition sys-
tem has two phases: semantically labeling the food concepts
and properties in a meal description, and assigning attributes
to the correct food items. Previous work has applied frame-
semantic parsers [5], triangular CRFs [6], and neural net-
works [7, 8] to the problem of semantic tagging.

3.1. Labeling

To accomplish the first semantic tagging task, we utilized a
variation of the standard CRF model, a semi-Markov condi-
tional random field (semi-CRF). Rather than assigning an out-
put label to each token, a semi-CRF assigns an output label to
token segments [9].

Semi-CRFs can be viewed as the conditional, or discrim-
inative, version of generative semi-Markov chain models, in
which there is a segment of tokens from i to di where the be-
havior of the system may not be Markovian. The state si at
token i persists until token di, at which point there is a tran-
sition to a new state s′ which only depends on state si. Semi-
CRFs perform better on segmenting tasks such as named en-
tity recognition and noun-phrase (NP) chunking. In our case,
the semi-CRF is a reasonable choice for a semantic tagging
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Fig. 3. Frequency of food items per meal description.

model because food items and properties are sequences of to-
kens. For example, a quantity might be the segment “a cup.”

Rather than modeling the conditional probability of out-
put y given input x, Pr(y|x), a semi-CRF models the proba-
bility of a segmentation s given x, Pr(s|x), where each seg-
ment si ∈ s consists of a start position tj , an end position uj ,
and a label yj : si =< tj , uj , yj >. For example, the quantity
segment “a cup,” appearing in the food log “I had a cup of
milk,” would be represented as < 2, 3, Quantity >, assum-
ing zero-indexing, since “a” has index 2 and “cup” has index
3. Also, rather than using local feature functions f , which
correspond to output labels of individual elements in x, semi-
CRFs use segment feature functions which correspond to out-
put segments of x. We define each segment feature function
gk(j,x, s) = gk(yj , yj−1,x, tj , uj) according to the Markov
assumption that a segment sj depends only on the previous
segment sj−1. Then, if we let G(x, s) =

∑|s|
j=1 g(j,x, s), a

semi-CRF estimates the distribution

Pr(s|x,W) =
1

Z(x)
exp (W ·G(x, s)) (1)

where W is a weight vector for G and Z(x) is the normaliza-
tion factor

∑
s′ exp (W ·G(x, s′)). In addition, semi-CRFs

provide the benefit of high-order CRFs without the associated
computational cost.

The features selected for the food/property labeling task
include n-grams (unigrams, bigrams, trigrams, and 4-grams),
lexical features (i.e., the segment matches an item in a lexicon
of USDA food products), and part-of-speech (POS) tags. We
used Stanford’s open source tagger to generate POS tags [10].

3.2. Segmenting

In the second phase of the language understanding compo-
nent, we took the semi-CRF output and determined which at-

tributes were associated with which foods. We investigated
three approaches: a Markov model (MM), transformation-
based learning, and a CRF classifier.

3.2.1. Simple Rule

As our baseline, since 90.8% of the attributes in the data ap-
pear prior to their corresponding food item, we defined a sim-
ple rule which assigns properties to the subsequent food. For
example, in the description “I had a cup of milk with a hand-
ful of blueberries,” the quantity “a cup” would be associated
with “milk,” and the quantity “a handful” with “blueberries.”
In the case where an attribute appears after the last food item
in the description, the attribute is assigned to the last food.

3.2.2. Markov Model

To improve upon the baseline method, we took advantage of
the sequential nature of the food description data (e.g., a food
item may be more likely to appear after a brand than a quan-
tity) by modeling it probabilistically. We defined a first-order
Markov chain, in which each observation xi depends only on
the previous observation xi−1. The joint distribution for a
sequence of n observations under this generative model is

p(x1, ..., xn) = p(x1)

n∏
i=2

p(xi|xi−1), (2)

which leads to the conditional distribution for observation xi,
given all previous observations, of

p(xi|x1, ..., xi−1) = p(xi|xi−1), (3)

since, by the Markov assumption, xi depends only on the pre-
vious observation xi−1 [11, 12]. In our case, we let each ob-
servation in the Markov chain represent an attribute or food
item. For example, in the meal description “I had a bowl of
cereal,” the semi-CRF would label “a bowl” as a quantity and
“cereal” as a food, resulting in the Markov chain in Figure 4.

Fig. 4. A first-order Markov chain for the food description “I
had a bowl of cereal.”

We implemented this Markov model with a finite state
transducer (FST), which transduces an input string into an
output string [13]. Like a Markov model, an FST has states
and transitions with associated weights; we let each state rep-
resent a possible food/property semi-CRF label and added
start and end states. The input to the FST is a string of
food/property labels in a food diary, and the output is the same
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string segmented by “#” such that each food item and its asso-
ciated properties are within the same segment. For example,
the diary “I had a bowl of cereal with milk” would correspond
to the input string “Q F F” and would generate the output “Q
F # F.” This indicates that “a bowl” is a quantity describing
“cereal,” and “milk” has no attributes.

We used the frequency of label patterns (e.g., “Q B F D
F”) that occur in the training data to calculate the initial state
distribution (e.g., P (Q) = 0.65) and the state transition prob-
abilities (e.g., P (F |D) = 0.57). In addition, using the his-
togram in Figure 3, we calculated the probability that a sub-
sequent food follows the current food. The transition weights
in the FST behave like negative log probabilities.

3.2.3. Transformation-Based Learning

We further improved upon both the simple rule and the
Markov model approaches by applying a transformation-
based learning (TBL) algorithm. This method starts with an
initial solution to a problem (e.g., the simple rule baseline)
and iteratively applies transformations, selecting those which
improve the performance most. We used the Fast TBL toolkit
developed at Johns Hopkins [14].

In order to adapt TBL to the food-property association
problem, we framed it as a classification task. To do this, we
modeled it after the NP chunking problem, a well-known nat-
ural language processing (NLP) task. In NP chunking, each
word in a sentence belongs to one of three classes: B (the
start of an NP), I (inside an NP), or O (outside an NP). For
the food chunking problem, we used the same three classes
to label each word as belonging to a food chunk or not. The
data samples from which the classifier learns are composed
of a token, its semi-CRF label (i.e., food, quantity, brand,
description, or other), the predicted chunk label, and the ac-
tual chunk label. An example food diary is shown in Table 2.
We also defined general rule templates from which the model
learns specific rules that may be applied in order to improve
the system’s performance. For example, the rule template
“chunk0 chunk1 label0 ⇒ chunk” implies that given the cur-
rent chunk label, the next chunk label, and the current semi-
CRF label, the current chunk label should be transformed to
that specified by the rule.

3.2.4. CRF

As an alternative to the TBL algorithm, we investigated the
CRF. Since it is a discriminative classifier as well, the CRF
was trained on the same data as the TBL model. However,
rather than defining a set of rule templates, we provided fea-
ture templates corresponding to unigrams and bigrams of out-
put tags that appear with certain combinations of tokens and
food/property labels. We used the CRF++ toolkit [15] and
also trained a TBL model with the CRF as a baseline.

Token CRF Label Chunk
I Other O

had Other O
a Quantity B

bowl Quantity I
of Other I

cereal Food I

Table 2. Example of the food chunking classification prob-
lem, where a chunk label B, I, or O is assigned to each token,
given its semi-CRF label (i.e., brand, quantity, description,
food, or other).

4. RESULTS

To evaluate our methods for labeling and associating foods
and properties, we split the AMT data into training and test
sets and computed the precision, recall, and F1 (harmonic
mean of precision and recall) scores for each approach.

4.1. Labeling

Through 10-fold cross-validation, we selected the set of fea-
tures for the semi-CRF that resulted in the highest average
F1 score. As shown in Table 3, the F1 scores of various fea-
ture sets are all similar. We selected n-grams (i.e., bigrams,
trigrams, and 4-grams), food lexicon features, and POS tags.

Features Mean F1 Var St. Dev.
N-grams 84.57 0.57 0.75

+ Food lexicon 84.62 1.25 1.12
+ POS tags 84.83 1.17 1.08

Table 3. Semi-CRF 10-fold results for different feature sets.
N-gram, lexicon, and POS tag features combined achieve the
highest mean F1 score (shown in bold).

We measured the performance of the semi-CRF trained
on our selected feature set using the test data, as shown in Ta-
ble 4. We evaluated the semi-CRF at the concept level as op-
posed to the word level so that a concept is considered correct
if the CRF labels the concept correctly, even if a word within
the concept is labeled incorrectly (i.e., the current token’s la-
bel is the same as either the previous or the next token’s label,
and both the previous and next tokens’ labels are correct). For
example, “a bowl” would be counted as correct even if “a” is
labeled incorrectly, as long as “bowl” is labeled correctly.

Examples of the types of errors made by the semi-CRF
are shown in Table 5. Descriptions and brands are sometimes
swapped or omitted altogether. From Tables 4 and 5, we in-
fer that the semi-CRF identifies foods, quantities, and other
much more easily than brands or descriptions, which reflects
the high Turker disagreement for the brand and description
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Label Precision Recall F1
Food 92.45 87.50 89.91
Brand 87.32 70.99 78.32

Quantity 92.43 91.33 91.87
Description 85.57 77.57 81.37

Other 91.66 95.76 93.67
Overall 88.25 82.16 85.09

Table 4. Semi-CRF concept-level performance on test data.

categories. In addition, some brands may not be seen in train-
ing data (i.e., out-of-vocabulary words). To address these is-
sues, we may need to revise the AMT tasks to enable Turk-
ers to more easily differentiate between brands and descrip-
tions. We can also create a brand lexicon using the nutritional
database. In the future, the nutrition system may learn new
brands or foods through dialogue with a user.

Token Predicted Label AMT Label
Nescafe Description Brand
frosted Brand Description

Ritz Other Brand

Table 5. Semi-CRF semantic tagging errors.

We compared the semi-CRF performance to that of a stan-
dard CRF baseline (using the CRF++ toolkit), testing for sig-
nificance at the p < 0.0001 level using McNemar’s signifi-
cance test [16]. We found that the difference was not statis-
tically significant; thus, although the semi-CRF handles seg-
menting in a more intuitive manner than do standard CRFs,
there is no significant gain.

4.2. Segmenting

In Table 6, we present the performance of six approaches to
the food-property association task. The TBL algorithm sig-
nificantly improved upon the simple rule and Markov model
(MM) baselines, but not the CRF (where statistical signifi-
cance was measured using McNemar’s test). Although the
Markov model performed slightly better than the simple rule,
the difference is not statistically significant, whereas the im-
provement of the CRF over all other methods is statistically
significant (p < 0.0001). The CRF model performed best,
achieving a token-level accuracy of 97.22% and a phrase-level
F1 score of 87.13.

A few examples of errors made by the different models
are shown in Table 7. Since brands and descriptions occa-
sionally appear after a food, the simple rule incorrectly as-
signs attributes in these cases. For example, in the food diary
“two eggs sunny side up,” the simple rule mistakenly begins
a new food chunk with the description “sunny side up,” since
“sunny side up” is actually part of the food chunk correspond-
ing to “eggs.” Although TBL corrects many of these errors,

Approach Acc Prec Recall F1
Simple Rule 84.44 51.50 54.22 52.83

Simple + TBL 94.31 77.94 78.27 78.11
MM 84.86 54.64 57.17 55.88

MM + TBL 95.22 82.65 80.38 81.50
CRF 97.22 87.13 87.13 87.13

CRF + TBL 95.48 83.97 82.91 83.44

Table 6. Test performance of approaches to the food seg-
menting task, where accuracy is calculated at the token-level
and precision, recall, and F1 are computed at the phrase-level.
The CRF (shown in bold) achieved the best performance.

some still remain (e.g., it predicts two food chunks for “grits
Quaker” instead of one). MM errors occur when it incorrectly
segments the labels. For example, it segments the food diary
“oatmeal from Dunkin’ Donuts I had water to drink” into the
output string “F # B F,” which incorrectly associates the brand
“Dunkin’ Donuts” with “water” rather than “oatmeal.”

Method Text Auto AMT
Simple two eggs sunny side up BIBII BIIII
+ TBL grits Quaker BB BI
MM oatmeal from Dunkin’ Donuts BOBI BIII

+ TBL cake that i bought IIII IOOO
CRF butter to grease BII BOO

Table 7. BIO food chunking mistakes, where auto is the pre-
diction and AMT is the gold standard annotation.

The TBL toolkit outputs a list of successful rules, as
shown in Table 8. This allows us to observe where the base-
line method made errors and which rules were used to fix
those mistakes. For example, the model learned that if the pre-
vious two chunk labels are O, then the current chunk should
change from I to B, since new food chunks always start with
B. In addition, if the current token is labeled Other but has
the chunk label B, then the chunk label should be changed
to I because a new food chunk cannot start with the label
Other. Some rules specify that attribute tokens should have
the chunk label I rather than O, which is reasonable since at-
tributes should be part of food chunks.

Rule Score
C−2 = OC−1 = OC0 = I ⇒ C = B 351

C0 = B L0 = O ⇒ C = I 172
C0 = OL0 = D ⇒ C = I 169

Table 8. TBL (with simple rule baseline) high-scoring rules,
where score is the number of improvements minus perfor-
mance reductions. Ci represents a chunk label at index i (e.g.,
B, I, or O), and Li indicates the food/property label at i.

564



5. CONCLUSIONS

We have described experiments for extracting food concepts
from spoken input to a nutrition dialogue system. We ex-
plained the process of data collection via AMT crowdsourc-
ing and presented two phases of the system’s language un-
derstanding component: semantic tagging and association of
attributes with foods. We measured the performance of a
semi-CRF that outputs segments of foods and attributes, and
described the selected features. We also evaluated three ap-
proaches for assigning properties to foods: a Markov model
that segments food concepts with their attributes, a TBL al-
gorithm that iteratively learns rules to correct the baseline’s
errors, and a CRF classifier that frames the food segmenta-
tion task as a chunking problem.

Since the majority of attributes appear prior to their cor-
responding food items, the baseline simple rule which asso-
ciates foods with prior attributes performs similarly to the
Markov model approach. However, the simple rule makes
mistakes which the Markov model does not. For example,
brands and descriptions may appear after a food; in the diary
“I had eggs from Trader Joe’s with bread,” “eggs” is the food
item and “Trader Joe’s” is its brand, but the simple rule would
assign “Trader Joe’s” to the food “bread.” Even though the
Markov model is likely to segment these diaries correctly, the
TBL algorithm shows greater improvement by directly cor-
recting these errors through the use of transformation rules.

Transformation-based learning also improves upon the
Markov model by learning rules that fix typical errors made
by this model. TBL and the CRF contain more information
than the Markov model by incorporating tokens, not just the
food/property labels, as well as tokens that are labeled Other.
The CRF is the best model, labeling the test data with the
highest F1 score of 87.13, possibly because the food chunk-
ing problem mirrors the standard NP chunking problem.

In the future, we plan to focus on other components of
the nutrition system in addition to language understanding.
Specifically, a dialogue manager may interact with the user
by asking follow-up clarification questions in order to select
the top food from the list of 10 hits returned by the nutritional
database or to learn new foods and brands when it encounters
out-of-vocabulary words. In addition, we will need to map the
user-described quantities (e.g., “smothered in”) to the quanti-
ties listed in the database (e.g., 1 tablespoon) so that we can
extract the correct nutrition facts. Finally, we plan to incorpo-
rate a bar code scanning feature, refine the user interface, and
potentially use computer vision to help detect food quantities.
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