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Abstract
The task of robustly detecting distant speech in low SNR en-
vironments for automatic speech recognition is examined using
a two-stage approach based on two distinguishing features of
speech, namely harmonicity and modulation frequency (MF).
A modified metric for harmonicity is used as a gating function
to a set of parallel classifiers that incorporate MFs computed
on different frequency bands. Performance is evaluated on both
the frame-level discriminative power and also the system level
ASR results on a real-world robotic forklift task. Compared to
other previously proposed features such as relative spectral en-
tropy, and classification strategies involving MFs, the combined
approach shows good generalization across different kinds of
dynamic noise conditions, and obtains a significant improve-
ment on the false alarm rate at low speech miss rate settings.
The overall ASR results also improved significantly compared
to the ESTI AMR-VAD2, while reducing the number of false
alarms by a factor of two.

Index Terms: voice activity detection, modulation frequency,
harmonicity, human-robot interaction.

1. Introduction
Voice Activity Detection (VAD) is the process of identifying
segments of speech in a continuous audio stream. VAD is often
the first stage of a speech processing application, and is used
to both reduce computation by eliminating unnecessary trans-
mission and processing of non-speech segments, as well as re-
duce potential mis-recognition errors in such segments. Since
the process of making binary decisions about the presence or
absence of speech is error prone, VAD is often avoided by re-
quiring the user to initiate speech recording (e.g., using push-
to-talk, or tap-and-talk mechanisms). In this paper, we consider
the task of giving commands to an autonomous forklift [1]. It
is crucial for the forklift to be able to continuously listen for
possible commands, especially ones related to safety. In this
scenario, VAD becomes an important consideration.

VAD has received considerable attention from the research
community. In high quality recording conditions, energy-based
methods perform well (e.g., [2]). In noisy conditions however,
energy-based measures often produce a considerable number
of false alarms. For this reason, a large variety of other fea-
tures have been investigated for use in noisy environments (e.g.,
[3, 4]). Such techniques often require tuning parameters to a
particular noise environment for them to be effective, and have
difficulties dealing with non-stationary or instantaneous types
of noises that are frequent in our task.

When it is difficult to know the nature of the noise a pri-
ori, features that measure fundamental attributes of speech are

highly desirable. Two such attributes are harmonicity and tem-
poral energy modulation. Tucker proposed a VAD based on
detecting the harmonic structure of speech and showed good re-
sults even at very low SNR conditions [5]. However, since har-
monicity is a basic property of any periodic signal, it is not use-
ful by itself. Measures of temporal rhythm have been explored
via modulation frequencies (MFs) which measure the temporal
rate of change of energy across different frequency bands [6, 7].
Bach et al. used a purely MF-inspired set of features for dis-
criminating between speech and non-speech which gave good
generalization to noise types not included in training [8].

In this paper, we report on our experiments in a real world
speech recognition system with VAD that incorporates both har-
monicity and MF-based features. We explore a variety of con-
figurations and perform experiments for the task of detecting
shouted speech in an outdoor application involving interaction
between humans and an autonomous forklift under dynamic
outdoor noise conditions. By combining harmonicity with MF-
based techniques we ultimately are able to improve the recog-
nition compared to other standard VAD algorithms we investi-
gated on real-world data.

The rest of this paper is organized as follows. Section 2
provides the reasoning behind the implementation of the VAD
based on the harmonic structure of speech. Section 3 explains
the MF extraction and the classification techniques applied.
Section 4 describes the database and experimental results with
some discussion. Finally, in Section 5 we provide some con-
cluding remarks.

2. Harmonicity
In low SNR situations such as the one shown in Figure 1, non-
sonorant portions of the speech signal are typically the first to
become inaudible and masked by noise. In contrast, the har-
monics associated with the main formants in vocalic regions
often have the best local SNR conditions and are the most ro-
bust to additive noise. Thus, detecting the harmonic structure
in speech sonorants has long been recognized as a noise-robust
means to detect candidate speech regions, even in low SNR con-
ditions. For example, Booersma proposed a periodicity measure
that used normalized autocorrelation [9]. For a stationary time
signal x(t), the autocorrelation rx(τ) as a function of the lag τ
is defined as

rx(τ) =

R
x(t)w(t)x(t + τ)w(t + τ)dt

R
w(t)w(t + τ)dt

where w(t) is the windowing function (in this case, a Hanning
window). The division by the autocorrelation of the window
compensates for the windowing effect of the autocorrelation.
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Figure 1: Example of distant speech from the forklift database.
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Figure 2: Effect of cepstral bandpass liftering. Top left : Auto-
correlation of a vowel with F0 of 275 Hz. Top right : Autocor-
relation of a 1200 Hz tone. Bottom left : Autocorrelation of the
vowel after liftering. Bottom right : Autocorrelation of the tone
after liftering.

For a periodic signal, the highest local maxima will occur at the
lag τ corresponding to the period. The relative power between
the local peak and the zero-lag peak corresponds to the amount
of periodicity in the signal. Harmonicity H is defined as:

H = 10 log10

rx(τ)

rx(0)− rx(τ)

However, since this periodicity measure will yield a high
value for pure tones (e.g., such as beeping from a truck backing
up), it is not practical in this basic form. In order to address
this shortfall, bandpass cepstral liftering can be performed to
extract frequencies corresponding to typical fundamental fre-
quency values of human speech. Such filtering will retain the
harmonic structure present in voiced speech, but filter out non-
harmonic modulations such as spectral shape, tones, or peri-
odic signals that are above human ranges (e.g., 1kHz). For our
experiments, we extract frequencies in the 100-400 Hz range;
however we observed that the results of our experiments were
not overly sensitive to the precise values we used. Figure 2
shows the effect of the bandpass liftering on the autocorrelation
function. Note how the pure tone now has a much lower local
minima after the liftering.

3. Modulation Frequency
Harmonicity is able to capture local harmonic structure in the
speech signal that is retained even in low SNR conditions. Fig-
ure 1 also shows that temporal energy fluctuations resulting
from speech production are also present in the speech signal in
such conditions. This basic modulation pattern around the 4Hz
range is a fundamental property of speech [10]. One method to
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Figure 3: The modulation frequency part of the VAD.

extract this information is via Modulation Frequencies (MFs)
which extract frequency information over longer time spans in
different frequency bands [6, 8, 7].

The basic architecture of the MF-based VAD we explore
in this work is illustrated in Figure 3. Essentially, it consists
of an initial frequency analysis via Short-Time Fourier Trans-
form (STFT) performed every 10ms with a Hamming window
of 30ms. Individual STFT energy magnitudes are consolidated
into a smaller number of N frequency bands by summing. The
consolidated magnitude energies in each frequency band are
then subjected to another STFT using a longer time window
of M frames. A compression of 20 log10(1 + |x|) is applied to
each MF to reduce the dynamic range. The resulting low-order
STFT values correspond to the MFs in each frequency band. In
our case, we typically use MFs in the range of 0 to 16Hz. Unlike
[6, 8] who ignore the DC MF to remove convolutive noise, we
found that the DC MF is an important cue for a speech event.

The output of the MF analysis can be used to perform a
speech/non-speech decision every M frames. For this task re-
searchers have explored the use of a single classifier [6, 8], as
well as parallel classifiers that make independent decisions on
each frequency channel [7]. Although Figure 3 shows the par-
allel SVM configuration, we explored and report on both meth-
ods in this paper. In our experiments we used a support vector
machine (SVM) with radial basis kernels. Prior to SVM classi-
fication the low-order MFs in each channel are first transformed
via Neighborhood Components Analysis (NCA) [11]. NCA is
attractive since it does not make strong assumptions about the
distribution of the underlying classes. We learn a single NCA
transformation matrix and use it across all frequency channels.

The decision values from each SVM are passed through a
compression function 1/(1+exp(−2d)) in order to avoid over-
confidence in the decision of any particular frequency channel.
The compressed decision values are then summed across all
channels for a final decision value. This value is compared to a
decision threshold, θMF , to decide the final classification label.
The threshold can be used to trade-off missed detections versus
false-alarms. In the case of our experiments we chose to operate
with a low miss detection rate since we could pass the result to
a speech recognizer to further process the result.

Although not shown in Figure 3, harmonicity was a neces-
sary condition for a M frame segment to be classified as speech.
The harmonicity value H was required to exceed a threshold,
θH , for classification to proceed.

4. Experiments and Discussions
4.1. Speech/Non-speech detection capabilities

We performed a series of experiments to evaluate harmonicity
and MF-based VAD on a challenging VAD task involving de-
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System EER(%) FAR(%)

RSE [4] 7.92 18.21
LTSV [12] 20.10 71.75
GMM:MFCC 31.75 61.12
GMM:MF 7.4 19.5
Harmonicity 12.93 56.69

SVM:MFwhole 5.08 14.23
SVM:MFch 4.53 8.99

SVM:MFwhole+NCA 4.93 11.47
SVM:MFch+NCA 4.15 8.38

SVM:MFch+NCA+Harm 4.01 7.65

Table 1: EER and FAR comparison between VAD configurations
on the synthetic dataset.

tecting distant speech for commanding an autonomous forklift.
In this part of the experiment, we started with the investiga-
tion of the harmonicity and MF features in speech/non-speech
classification as a pure detection task, i.e. to evaluate the sys-
tems’ potential to differentiate between speech and non-speech.
We collected a synthetic dataset consisting of speech commands
from 26 subjects with added noise to simulate a variety of SNR
values ranging from -5 to 15 dB. Both speech and noise were
real data recorded with an array microphone. Noise data con-
sisted of a variety of recordings we expected to encounter, in-
cluding engine, street, loading dock, background talking, and
environmental sounds such as wind, etc. Classification was per-
formed on each frame without any additional post-processing
steps. Frames that spanned a transition between speech and
non-speech were excluded. We report the equal error rate (EER)
between frame-level missed detections and false alarms, as well
as the false alarm rate (FAR) that was obtained upon setting
the miss detection rate at 1%. Training was done on 4 min-
utes worth of speech and 22 minutes worth of non-speech data
excluded from the testing set.

For comparison purposes, we also include results on sys-
tems optimized for this task based on relative spectral entropy
(RSE) [4], long-term signal variability (LTSV) [12], and sta-
tistical model-based VADs (such as one in [13]) using MFCCs
and MF as features to Gaussian mixture models (GMMs).

Performance of a variety of VAD configurations on the syn-
thetic data are summarized in Table 1. For each configuration,
we show the achieved result after optimizing parameter settings
(e.g., N, M etc) on the held-out data. In terms of the long win-
dow size, we examined a range of durations from 300-1300 ms
and found that a window anywhere between 500 to 1000 ms
gave reasonable results. Ultimately, we used a window size
of 640 ms for all subsequent experiments. The GMM:MFCC
had the lowest performance, while GMM:MF performs compet-
itively. This might be due to the fact that MFCCs are very sus-
ceptible to noise. The RSE-based VAD performed better than
the harmonicity system alone; However, the combination of MF
and harmonicity based systems reduced the FAR by a maximum
of 71% compared to the RSE system.

We then examined different MF configurations. The sin-
gle SVM configuration (MFwhole) (based on [8]) performed
worse than the parallel SVM configuration (MFch) which is
more robust to corruption from band limited noises. We then
examined the use of NCA transformations prior to the SVM
models and found that NCA improved the performance in both
cases. The best VAD performance were obtained when har-
monicity was added as a gating function to the parallel SVM,
reducing the FAR by 9% compared to the best system purely
based on MF.
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Figure 4: EER (top) and FAR (bottom) performance for three
VAD configurations on four noise conditions.
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Figure 5: Overall performance on the synthetic database.

Since the synthetic dataset consisted of several different
noise types, we also examined the performance of different con-
figurations on specific noise conditions. The results are shown
in Figure 4. From the figure we can see that the performance
varied across specific kinds of noise, with babble noise being
the most challenging. We also see that the parallel SVM+NCA
configuration with harmonicity consistently did well in all noise
conditions compared to the alternatives.

Finally, we observe that the EER and FAR values for each
noise type are usually obtained at different thresholds. A system
can do well on all noise types individually but poorly overall if
the optimal thresholds for each noise type vary significantly.
Table 1 and Figure 5 show the performance on all noise types
with equal amount of testing utterances per noise type. Low
EER and FAR values signify the potential of the system in terms
of generalization to different environments without the need to
re-tune. The harmonicity system has poor performance on its
own since it is based on a simple metric. However, our measure
is low in computational cost and works well as a pre-filter for
the MF system. Sometimes the MF system on its own false
triggers on a sequence of impulse-like sounds, such as hammer
sounds, which can be removed by the harmonicity system.

4.2. Effect on ASR performance

In the second part of our experiments, we examined the influ-
ence of different VAD systems on the ASR results in the task
of commanding an autonomous forklift in real world environ-
ments. Our evaluation data consists of actual recordings from
four microphone arrays mounted on the forklift approximately
2.4 meters from the ground [14]. Recordings were made from
22 subjects commanding the forklift from distances typically
tens of meters away in outdoor environments such as parking
lots and warehouses. The SNR values ranged from 5 to 25 dB.
The entire corpus, containing four microphone channels, is 10
hours long, with roughly 400 command words. The number of
commands are sparse, since the forklift is mostly idle waiting
for commands or taking the time to execute commands.
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VAD Words Correct WER FA
(%) (%) (times/min)

Hand-labeled 56.3 45.0 0

RSE 44.1 59.6 0.70
AMR-VAD2 36.2 69.6 1.20
AFE 34.3 66.9 0.94
G.729B 7.0 93.5 0.30

MF+Harm 55.5 48.3 0.61

Table 2: Word recognition results using different types of VAD.

ASR was performed using PocketSUMMIT [15], a small
footprint landmark-based speech recognizer. The task had a vo-
cabulary size of 57 words. To filter out speech that was outside
of the pre-determined set of commands, we also incorporated
an explicit out of domain (OOD) command that was modeled
by a single Gaussian mixture model trained on generic speech.
OOD utterances in the database were tagged. The ASR model
was trained on over 3,600 utterances of commands from 18 talk-
ers under acoustic conditions similar to the corpus described in
the previous paragraph.

Table 2 summarizes the ASR results. We showed the per-
centage of words correctly recognized and the word error rate
(WER). The nature of the task requires continuous listening de-
spite long periods of silence; as such the conventional definition
of insertion error will yield unreasonable numbers. To have the
WER correctly correlate with errors caused by the VAD clip-
ping speech, triggering too early, or delaying too long (a “hang-
over”) after speaking has finished, we redefine insertion errors
in this task to be those that occur within a one second vicinity
of an underlying command. Utterances incorrectly recognized
outside of the commands’ vicinity are considered to be false
alarms (FA). For example, if the reference command is “Stop,”
the hypothesis of “Stop it” in the vicinity counts as one insertion
error. On the other hand, a hypothesis of “Stop it” in a period of
silence counts as one false alarm at the utterance level instead
of the word level. The number of false alarms is normalized by
the length of the corpus, which represents the rate at which the
forklift might improperly respond to false commands.

We compared our VAD with the other VAD systems de-
scribed in the previous experiment with an inclusion of a sim-
ple hang-over scheme based on finite-state machines. All VADs
were set to operate at 1% frame-level miss detection rate on the
synthetic database. Standard VADs such as AMR-VAD2 [16],
ESTI-AFE [17], and G.729B [18] were also considered. For ref-
erence, we also included hand-labeled boundaries from human
experts as an ideal VAD to evaluate the ASR’s effectiveness.

In terms of WER, the proposed system performed almost as
well as an ASR system using hand-labeled end points. Although
the accuracy was low, most of the recognition errors were style
words which had little effect on the command level understand-
ing. The proposed system also introduced the least amount of
false alarms which was crucial for the robot to operate reliably.
Note that the G.729B VAD remained on for extended periods of
time, confusing the recognizer for OODs instead of commands.
In the case of a recognition task in a noisy stream, the effect of a
more accurate VAD outweighs the resolution lost by the frame
size (in the MF system 320 ms). It is also possible to increase
the resolution by doing a second pass with another type of VAD
or voting with a smaller frame increment (such as one in [12]).
This remains as an investigation for future work.

5. Conclusion
This paper described the task of VAD on distant speech in low
SNR environments for an autonomous robotic forklift. Inspired
by speech-like cues, namely harmonicity and MF, we designed
a two-stage approach for speech/non-speech classification. Our
experiments showed that the parallel SVM configuration usu-
ally outperformed classification based on the whole MF spec-
trum. A combination between MF and simple harmonicity mea-
sure helped reduce false alarm rate by another 9% at low miss
rates. In ASR experiments, the proposed VAD outperformed
standard VADs and achieved a WER very close to that of hand-
labeled end points.
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