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ABSTRACT 

 

This paper presents a method for extracting both syntactic 

and semantic tags. An extended CFG parser works in 

conjunction with an HMM model, which handles unknown 

words and partially known words, to yield a complete 

syntactic and semantic interpretation of the utterance. Four 

experiments and applications were performed using the 

paradigm to show the usefulness of the approach in 

processing spoken sentences. 

 

Index Terms— HMM, Lexicon Development, Data 

Labeling, Spoken Language Processing 

1. INTRODUCTION 

The task of semantic understanding in the context of spoken 

dialogue systems is a well-researched topic [1] [2] [3]. 

While methods based on explicit parsing often provide a 

more reliable interpretation than purely stochastic methods, 

they are prone to hard failure, and this may be especially 

problematic when faced with errorful recognition outputs. 

On the other hand, parse failure can be useful as a rejection 

criterion, protecting the system from providing an 

inappropriate response to an out-of-domain utterance. 

    Recently, machine-learning methods have gained 

popularity for the task of extracting key semantic 

information from utterances, while essentially bypassing 

syntactic analysis. The field of named-entity extraction, 

which is closely related to speech understanding for spoken 

dialogue systems, is replete with examples of approaches 

that utilize a set of carefully chosen features and a machine 

learning algorithm to model the mapping from features to 

semantic tags [4]. 

    We have been developing spoken dialogue systems for 

many years, and our approach utilizes a syntax-based 

lexicalized context-free grammar (CFG), which depends on 

explicit knowledge of the vocabulary, but can utilize 

semantic tags to allow unknown words to parse under 

specially designated categories such as “restaurant_name” 

or “street_name” [5]. Such a grammar is designed to work 

with a dynamic recognizer that emits these tags 

automatically, and a mechanism exists in our dialogue 

systems to populate these special categories on the fly in the 

recognizer with explicit vocabulary items based on dialogue 

context. However, typed sentences would not contain such 

tags, and hence a research topic arises which involves 

automatically tagging typed queries entered into the system. 

    Amazon Mechanical Turk (AMT) provides a new 

opportunity to collect inexpensive and reasonably high 

quality data, to use for system development in spoken 

dialogue systems. Such data can be essential for building 

new natural language applications or adapting an existing 

application to a related domain. The data help define the 

domain vocabulary and can be used as training data for 

language modeling and system development. However, such 

data typically come without any semantic tags, so 

techniques to automatically acquire such tags are needed, 

unless expertise is devoted to this task, which defeats the 

purpose of cheap data collection.  

    Even in a domain without explicit tags, it is difficult to 

acquire full knowledge of all vocabulary items, particularly 

in the large or even open classes such as adjective, noun, 

and proper noun. Our parser supports unknown words in 

noun classes. However, some words are known to the parser, 

but not known under the appropriate syntactic category in 

the sentence. For example, if “win” were only known as a 

verb, the sentence, “talking to him was a big win” would not 

parse. However, if we allow both known and unknown 

words to be supported under “noun,” then the parse space 

grows astronomically, which is problematic. We refer to this 

problem as “category mutation.” Expanding the grammar to 

improve coverage on a new set of utterances for a new 

domain is typically labor intensive and requires expertise. 

    In this paper, we propose a novel method for extracting 

both syntactic and semantic tags, and then utilizing that 

information to aid in the process of acquiring a semantic 

understanding component for a new domain. The system 

includes an explicit model to handle both unknown words 

and words that are only partially known (as in the example 

“win” above). The extended CFG parser works in 

conjunction with an HMM model to yield a complete 

syntactic and semantic interpretation of the utterance, even 

in the presence of unknown or partially known words. The 

system automatically proposes a set of new grammar rules 

to associate words with preterminal categories, which are 

then subject to approval by the developer. 



    Several applications using the model will be discussed, 

involving grammar lexicon development and data labeling 

for dynamic language models in the speech recognizer. In 

the first case, the data apply to a new domain, and typically 

a large number of unknown words are present. The purpose 

is to generate a new lexicon for a CFG grammar to account 

for proper category assignment for the new vocabulary in 

the data. In the second case, the goal is to tag out the phrases 

that belong to the pre-defined dynamic classes of a dynamic 

language model. In both cases, proper handling of unknown 

words and category mutation is the key focus. 

    The rest of the paper is organized as follows: Section 2 

will give a brief discussion of HMM-based data labeling 

models. Section 3 will introduce our approach. Section 4 

will show the application of the model in terms of lexicon 

development and dynamic class labeling. Section 5 will 

conclude the paper and point to some future work. 

2. HMM-BASED LABELING 

Two common word-level labeling tasks are part-of-speech 

tagging and named entity recognition. Although the tags 

differ for the two cases, both can be described as follows: 

given an input word sequence w1, …, wn, output a sequence 

of tags or labels t1, … tn. The labels are usually syntactically 

or semantically meaningful, such as the part-of-speech or 

the named entity class of the word.  

    Hidden Markov Models are commonly used to solve this 

problem, as described in [6] and [7]. In this generative view, 

the word sequence is the observation sequence, and the 

labels are the hidden states. The next word wi is generated 

by first generating its label ti based on a finite history of 

previous labels ti-1, ti-2, …. Then wi is generated according to 

the emission probability, which can be modeled as either 

only depending on the current state ti, or depending on both 

the current state and the state history. 

    One important problem in this model is how to deal with 

the unknown words, which are especially problematic when 

the training data are limited and inconsistent with the test 

data. Several methods to handle unknown words have been 

proposed. Word features are commonly used in computing 

emission probabilities for unknown words. For English, 

features such as capitalization and suffixes provide effective 

information for part-of-speech tagging [6] [8]. For 

languages like Chinese and Japanese, which do not have 

rich morphology, character level information is used to help 

guess the correct label [9] [10] [11]. Other methods that are 

not based on word analysis include the Hapax Legomena 

approach, which assumes the distribution of labels over 

unknown words is similar to the distribution of labels over 

words that occur only once in the training data [12]. Wang 

and Acero used a combination of CFG and HMM to learn a 

semantic grammar from a semantic scheme, a grammar 

library and labeled training data. An HMM model is 

incorporated to encounter problems in slot-poor low 

resolution tasks and robustness [13]. 

3. MODEL 

3.1. Extended CFG Parser 

The labeling approach we use integrates a CFG parser with 

an HMM preterminal model. The parser [13] uses a CFG 

grammar augmented with a set of non-context-free 

constraints to perform parsing. The grammar includes both 

syntactic patterns and the corresponding lexicon. A 

statistical model, automatically trained on parsed sentences, 

captures the spatial-temporal probabilities of the parse tree 

nodes, allowing it to select the best-scoring candidate 

among ambiguous parses. The parser is fast, small-foot-print, 

and robust to spoken language characteristics. 

    The labeling system takes in an input sentence (pre-

segmented in the case of Chinese), parses it, and then 

outputs a sequence of labels which are the immediate 

parents of each terminal word in the parse tree, i.e. 

preterminals. The preterminals can be syntactic or semantic 

categories. Thus, the system can perform various types of 

labeling, including but not limited to part-of-speech tagging 

and named entity recognition. 

    Three situations can cause parse failure: maximum stack 

space exceeded, unknown words and uncovered grammar 

patterns. The last situation, which indicates an under-

developed grammar, is outside the scope of this paper. In the 

other two cases, a back-up HMM model, discussed in more 

detail in the next subsection, is used to first hypothesize N-

best preterminal sequences. It includes an unknown word 

model, which hypothesizes categories for words that do not 

exist in the lexicon, as well as hypothesize new categories 

for known words. The parser then uses the restrictions of the 

preterminal sequence hypotheses one by one, and selects the 

output that has the highest probability, combining the HMM 

preterminal sequence score and the parse tree score. 

    There are three major advantages in integrating labeling 

with parsing. First, with the actual parsing process, the 

output labels are restricted by the grammar. Long distance 

dependency can be captured and grammatically 

inappropriate label sequences are avoided. Second, although 

vocabulary varies largely from domain to domain, the 

syntax of a language rarely changes among different 

domains. Thus, a generic grammar trained with a corpus in a 

broad coverage domain can be used to label data in other 

domains. Lastly, the system’s performance as a parser 

improves with the integration of the HMM preterminal 

model. Sentences containing unknown words and/or words 

with category mutation, and sentences that take up the 

parser’s stack space are likely to be parsed after preterminal 

sequences are hypothesized. The parsing process is very fast, 

given the restrictions on the preterminal categories. 

3.2. HMM Model 
The HMM model is defined using the following equation.  argmax��,…,�


P�t�, … , t�|w�, … , w�� 

�  argmax��,…,�

P�w�, … , w�|t�, … , t��P�t�, … , t�� 

(1) 
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    We assume that the generation of a word only depends on 

the current preterminal. Thus, the computation of the best 

preterminal (label) sequence t1, …, tn given the word 

sequence w1, …, wn can be decomposed into two parts: P�t�, … , t��  and P�w�|t�� . An N-gram model 

encodes P�t�, … , t�� , the preterminal sequence language 

model. P�w�|t��, the emission probability, can be calculated 

using Equation (2).  

P�w�|t�� �  c�w�, t�� � 1c�t�� � size�t�� (2) 

    c(·) denotes the empirical count of a specific word or 

preterminal. Size(·) is the number of words defined under 

the preterminal category. Thus, each word defined under the 

preterminal category has a minimal count of 1. 

3.3. Unknown Words and Category Mutation 
When a word is not defined in the grammar, or has not been 

defined under the desired preterminal category (category 

mutation), the unknown model is used instead of the normal 

emission probability. In the grammar, a special notation is 

used to indicate preterminal categories that are allowed to 

accept unknown words, such as nouns, proper nouns, etc. 

These preterminal categories are selected by the developers 

according to the specific application. We will refer to these 

categories as “open categories” and denote them as t  in the 

rest of the paper. The probability of an unknown word given 

category t  is calculated using the following two criteria. 

 P!�"�w|t � # 1c�t � � size�t � (3) 

 P!�"�w|t � $ c�t � � size�t � (4) 

    Punk applies to all word that do not exist under category t , 

i.e., regardless of whether the word is defined under other 

categories. The first criterion ensures that the unknown 

probability is less than that of any known word under the 

category. The second criterion states that, the more known 

words an open category has, the more likely it is to have an 

unknown word. Assuming an open category will never 

become closed, and the size always grows at a constant rate, 

then a large-vocabulary category can be viewed as the result 

of constant creation of new words under the category, and 

so it is more likely to accept new words. The number of 

occurrences accounts for those categories that do not have 

many words, but yet are highly likely to have new words 

because of frequent occurrence, such as the measure words 

in Chinese. Note that this criterion would not cause a 

problem for frequent categories such as English articles, 

which should not be open categories. 

    After the two criteria are satisfied, emission probabilities 

for the known words are renormalized to ensure that the 

probabilities of an open category sum to one. 

3.4. Unknown Character Model 

In addition to the unknown word model, an alternative 

unknown character model can be used to calculate the 

unknown word probability for Chinese. The meanings and 

positions of the characters in a word contribute to the 

meaning of the whole word. Furthermore, different 

categories tend to have different distributions over number 

of characters in the word. Thus, it is useful to calculate p�unk|t � on the basis of characters. 

    The unknown character model can be expressed using the 

following equation. P!�"�w|t � � P)*��len,|t � · P�����c�|t � · P*�.�c�|t � 

· � P�c�|t �
�

  (5) 

    In the equation, len, indicates the number of characters 

in the unknown word. P�����c�|t �and P*�.�c�|t � indicate, 

given category t , the probabilities of starting with character 

c1 and ending with character cn, respectively. These two 

terms take advantage of the position information of the 

starting and ending character. Term ∏ P�c�|t ��  accounts for 

the probabilities of each character given category t  in 

without regard to sequence order. 

    If a character in the word never occurs in category t , its 

probability is calculated using the same criteria as Equations 

(3) and (4), except that c�t � and size�t � are calculated on 

the character base instead of on the word base. 

    For languages like English, something similar to the 

unknown character model could be constructed based on 

prefixes and suffixes. 

3.5. Implementation 

The HMM model together with the unknown word model is 

directly implemented using Finite State Transducers (FSTs) 

[14]. The N-best preterminal sequences are obtained by 

composing the following three FSTs and outputting N-best 

paths using a standard FST search algorithm. 

• Input FST: maps each word in the sentence to itself. If 

the word does not exist in the grammar, maps it to a 

special unknown symbol. 

• Word-Preterminal FST: maps each word to its defined 

categories with P�w|t� . Also maps each word, 

including the unknown symbol, to all the open 

categories with P!�"�w|t �. 

• Preterminal N-gram FST: contains the N-gram 

language model for the preterminals. 

    In addition, Punk for out-of-vocabulary words is computed 

under the unknown character model for Chinese. 

4. APPLICATIONS 

4.1. Lexicon Improvement in Generic Chinese Domain 

The first experimental application was carried out in a 

Chinese travel domain. A generic grammar had been 

previously developed. However, the grammar is under-

developed, i.e., it does not cover all the syntactic patterns or 

the entire vocabulary in the domain. The experiments we 

carried out were aimed at enlarging the lexicon by using the 



extended CFG parser to automatically choose categories for 

the unknown words. 

    The corpus we used for the experiments was IWSLT05, 

which consists of 20,000 sentences in the spoken travel 

domain. The sentences were pre-segmented into words, and 

chunked according to periods before carrying out the 

experiments. After chunking, altogether 23,768 sentences 

were produced. The unique vocabulary size is 8,187, and 8.8% 

(727) were not included in the grammar. 

    The grammar contains 282 preterminal categories. 

Among those, eleven were defined as open categories: noun, 

adjective, verb, generic adverb, noun measure word, verb 

measure word, unit, front conjunction, back conjunction, 

location particle and uncommon preposition. Since there are 

no manually labeled training data to train the unknown word 

model, we use the following unsupervised procedure to 

perform lexicon improvement. 

a) Parse the whole corpus without the back-up HMM 

model. 

b) Tag the words for all the parsable sentences with their 

preterminals according to the top parse tree. 

c) Create the HMM model and the N-gram preterminal 

language model using the tagged data from (b).  

d) Parse the unparsable sentences with the HMM model 

obtained in Step (c). Enlarge the lexicon based on the 

new preterminal-terminal pairs in the parsed sentences. 

    After Step (a), 19,159 (80.6%) sentences parsed, and were 

used to build the FSTs. The resulting 4-gram preterminal 

language model is about the same size as a trigram LM built 

from the terminal words. The remaining 4,609 failed 

sentences were used in Step (d) to produce the new lexicon. 

Table 1 shows the statistics of the newly obtained lexicon 

using difference settings. The preterminal category 

assignment accuracy was judged manually. Since the 

grammar was underdeveloped, parse failure in Step (d) 

could be caused either by incorrect preterminal assignment 

or by uncovered syntactic patterns. To distinguish between 

the two factors, an oracle model was created for comparison. 

It assigns each unknown word to the most appropriate 

preterminal category among the eleven open categories. 

This gives an upper bound for the extracted unknown 

lexicon under the imperfect grammar. 

    The first three models gave similar numbers of correct 

preterminal assignments for unknown words. The accuracy, 

however, increases from 0.64 to 0.8 with the word length 

feature and character-level model. Using 5-best preterminal 

hypotheses increased recall but sacrificed accuracy.  

    Since the training of the model does not rely on manual 

labeling, the approach can be used iteratively. After a new 

lexicon is produced, a human expert judged the correctness 

of the preterminal assignments, added the correct ones into 

the original grammar, excluded the incorrect ones from the 

HMM model, and repeated the process. By doing so, more 

sentences will be parsed and serve as training data in the 

next iteration. We performed three iterations using the 1-

best Char+Len model. The final results are shown in the 

fifth line of Table 1. The recall is close to that of the 5-best 

Char+Len model, but the accuracy remains high. After three 

iteration, the parse coverage increased from 80.6% to 86.8%. 

 Unknown Words Category Mutation 
# total # correct accuracy # total  # correct accuracy 

Word 487 320 0.64 899 279 0.31 
Word 

+Len 
480 341 0.71 668 226 0.34 

Char 

+Len 
405 322 0.80 74 52 0.70 

Char 

+Len 

5-best  

559 385 0.69 229 116 0.50 

Char 

+Len 

3-iters 

486 377 0.77 93 60 0.65 

Oracle 470 470 1 - - - 

Table 1. Statistics of newly obtained lexicon: total 

numbers of terminals generated, numbers of terminals 

with correct preterminal assignment, and accuracy. 

    For the category mutation, it is observed that moving 

from word-level model to the character-level model 

significantly reduced the size of the generated lexicon. The 

training data contains the information of the word with the 

original preterminal assignment, and by using the 

information contained in each of the characters, the 

character-level model sets up a stronger relationship 

between the word and its original preterminal assignment. 

Thus, it is harder for a word to map to preterminal 

categories besides the ones already defined in the grammar. 

    Table 2 shows the accuracy of each open category of the 

first iteration using the 1-best length feature and character-

level model. All categories had fairly high accuracy except 

adjectives. Word formation of adjectives in Chinese is very 

flexible. Also, nouns, verbs and other words can also serve 

as modifiers, making it difficult to distinguish them through 

syntactic structure. 

noun 
187/227 

(82%) 
adjective 

20/60 

(33%) 
verb 

149/173 

(86%) 

adverb 
3/3 

(100%) 
n-measure 

7/7 

(100%) 

v-

measure 
0 

unit 
1/1 

(100%) 
f-conj 

2/3 

(67%) 
b-conj 

1/1 

(100%) 

lc-particle 
3/3 

(100%) 

uncommon 

preposition 

2/2 

(100%) 
  

Table 2. Category-wise accuracy of the first iteration 

using the length feature and character-level model 

(including both unknown words and category mutation). 

4.2 Tagging Named Entities in the Restaurant Domain 

An interesting application for the parsing resource described 

in this paper is to automatically tag data obtained via typed 

inputs, to be used for training the statistics of a spoken 

dialogue system. We have developed a system that provides 

information about restaurants, hotels, and other landmarks 

in a major metropolitan area [15], and we recently collected 



over 13,000 typed queries from AMT. We asked workers to 

imagine a system that could answer such questions and then 

to make up appropriate queries for such a system. Our 

recognizer is based on a dynamic framework where the 

contents of tagged entities are populated via the appropriate 

database at any time in the conversation, so the actual names 

provided by Turkers are not important to us. However, they 

need to be tagged, among the categories, street name, 

neighborhood, city, landmark, restaurant, hotel, museum, 

and subway, before we can use them either to train the 

language model for our recognizer or to process them 

through our natural language parsing component to verify 

proper understanding. 

how do I get from <streetname> main </streetname> and 

<streetname> chicago </streetname> in <city> evanston </city> 

to <landmark> century theater </landmark>? 

what's the phone number of <restaurant> rudyard's pub 

</restaurant> in <neighborhood> houston </neighborhood> 

where is the <restaurant> best ice cream shop </restaurant> 

near <landmark> central park </landmark> in <city> new york 

city </city>? 

what is the address for the <landmark> cleveland indians 

baseball stadium </landmark>? 

driving directions from <landmark> hunter's point </landmark> 

to <landmark> sf general hospital er </landmark> 

what family friendly restaurants are within walking distance of 

<landmark> independence hall </landmark> in <city> 

philadelphia </city> 

Figure 1. Examples of automatically tagged sentences 

from the city guide domain. 

We approached this problem by building an FST 

mapping an untagged sentence to an output sequence that 

encodes the preterminal layers of the parse trees, including 

the tags, which are embedded in the preterminal labels of 

the taggable entities. We trained it on a large corpus of 

synthesized utterances obtained by generalizing from a 

previously collected data set. An N-best list (N=10) of 

candidates was then processed by our parser, constrained by 

the strong filter provided by the N-best preterminal 

sequence hypotheses. In order to obtain a variety of options 

for the tags, we randomly chose among the top three 

candidates when more than one hypothesis could parse.  

    Figure 1 shows examples of several tagged sentences that 

were obtained using this strategy. Of course there are many 

errors in the tags, but for the most part they don't really 

detract from our ability to make good use of the utterances. 

For example, "best ice cream shop" is obviously not a 

restaurant name, but the sentence is a perfectly fine example 

of a plausible syntactic construct. Since our language model 

discards the contents of all tagged entities, replacing them 

with the tag identifier, there is no negative consequence of 

mistagging, as long as the resulting sentence is well formed 

and semantically plausible. The strong filter based on 

grammatical constraint usually reinforces well-formedness. 

We used these data to expand grammar coverage, ultimately 

obtaining a parse coverage of 94.2% on the data set. 

4.3. Tagging Adjectives and Nouns in a Restaurant 

Review Domain 

We have spent considerable research effort recently 

developing a system that can process consumer-provided 

restaurant reviews to obtain both ratings along dimensions 

such as food and service as well as a set of informative 

descriptive phrases, such as "superb margaritas," to serve as 

succinct descriptions of the restaurant's special features [16]. 

Our methods are based on a parse-and-paraphrase paradigm, 

where we extract key [adverb]-adjective-noun patterns from 

appropriate syntactic units. Until now, we have approached 

this problem by explicitly lexicalizing all the significant 

nouns and adjectives that show up in reviews, which is a 

time-consuming process. 

    Based on the success of our algorithm for tagging named 

entities, we are now exploring an alternative strategy for 

parsing review sentences which involves automatically 

tagging all the nouns and adjectives, thus not requiring the 

grammar to have explicit knowledge of the vocabulary 

contained in these large classes of words. We were able to 

train the model mapping from words to preterminal 

categories (including the tag labels) by taking advantage of 

an existing grammar which had explicit knowledge of the 

noun and adjective lexica. We utilized a very simple 

machine-learning strategy to map every word in the 

sentence to three categories with associated probabilities: 

adjective, noun, or other. Our statistical model utilizes two 

sets of features, one based on word unigram probabilities, 

and the other based on letter sequence trigrams in the words 

in each of the three categories. These statistics were trained 

on a large corpus of parsed utterances obtained from the 

Web. The parser selected from an N-best list (N=10) of 

tagged candidates. We assessed the effectiveness of the 

strategy by comparing the descriptive phrases extracted 

from the grammars with and without explicit lexical 

knowledge. 

    Evaluation was performed on the transcripts of a set of 

spoken utterances that were acquired by having subjects 

describe orally their opinions about a restaurant they had 

recently dined at. We manually compared extracted 

descriptive phrases obtained via the procedures outlined in 

[16] obtained via the two methods (tagged versus untagged 

sentences). For the untagged sentences, we used a grammar 

that could only parse a word as a noun or an adjective if it 

was marked with the appropriate tag.  

    In total, 173 phrases were extracted from the tagged 

sentences that were not extracted from the untagged 

sentences. By manual inspection, we judged 119 of these to 

be useful as descriptors, such as "amazing steak," "attentive 

waitress," or "crowded bar area.” The reason for its higher 

yield is that it realizes significantly better parse coverage, 

because it does not have to explicitly know the nouns and 

adjectives of the domain. This also means that the grammar 

can remain static, while the encoding of nouns and 

adjectives becomes a separate task carried out by the 

machine-learning algorithm.  



4.4. Experiments in a Medical Domain 

Our final experiment involves developing a grammar for a 

new domain. We envision a system that allows users to 

access a database of thousands of comments provided via a 

chat-room forum, on the specific subject of statin drug side 

effects. This domain is very different from our previous 

domains -- many words are out of vocabulary and the 

grammar constructs are often more complex. We have 

created a preliminary version of the Web page, and have 

obtained nearly 1,000 queries via AMT by presenting 

workers with extracted comments and asking them to come 

up with a query for which the comment would be an 

appropriate hit in a web search based on the query. We used 

our new tool to automatically acquire proposed preterminal-

to-terminal mappings for novel words appearing in the 

queries. An expert developer then manually repaired the 

automatically obtained grammar rules, and spent a few 

hours expanding the grammar rules to reflect new patterns 

in the sentences. A total of 588 new word-preterminal 

mappings were created. After this grammar development 

phase, about 91% of the sentences could be parsed by the 

new grammar. Example sentences are shown in Figure 2. 

Is my thinning hair due to the statins I'm on? 

Do statin drugs intended to lower cholesterol lead to diseases 

like ALS? 

Can the liver tests that are done when one has high cholesterol 

remain abnormal for years? 

Could Zocor be the cause of shoulder and neck pain in an 

otherwise healthy forty one year old female? 

Can pharmacists tell the patients that they should take 

coenzyme q ten for pain relief while taking statins? 

Could the joint pain that I have been dealing with lately be a 

side effect of the statins I have been prescribed? 

Figure 2. Example sentences from the drug side-effect 

domain that obtain a full parse analysis.  

5. CONCLUSIONS 

We have presented a framework for speech understanding 

which utilizes an extended CFG parser in conjunction with 

an HMM model to handle unknown words and partially 

known words. The HMM model is able to exploit 

character/morpheme level information to assign preterminal 

categories for each word in the sentence, and then restrict 

the parsing output based on the preterminal sequence. The 

approach takes advantage of the knowledge presented in an 

existing grammar, and thus does not require labeled training 

data. We have applied the approach in four different tasks of 

lexicon development and data labeling in different domains. 

In the future, we would like to extend the model to handle 

sentences that fail due to uncovered syntactic patterns. 
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