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Abstract
We demonstrate the generalizability of the Extended Baum-
Welch (EBW) algorithm not only for HMM parameter estima-
tion but for decoding as well. We show that there can exist a
general function associated with the objective function under
EBW that reduces to the well-known auxiliary function used in
the Baum-Welch algorithm for maximum likelihood estimates.
We generalize representation for the updates of model param-
eters by making use of a differentiable function (such as arith-
metic or geometric mean) on the updated and current model
parameters and describe their effect on the learning rate during
HMM parameter estimation. Improvements on speech recogni-
tion tasks are also presented here.

1. Introduction
Efficient methods for estimating Hidden Markov Models
(HMM) parameters are essential for solving a wide range of nat-
ural language processing tasks, such as part-of-speech tagging,
word segmentation, optical character recognition, as well as
acoustic modeling in speech recognition, just to name a few ap-
plications. Baum-Welch (BW) is a well-known efficient method
for computing the maximum-likelihood estimates of the param-
eters of a HMM that is based on the existence of an auxiliary
function that is a global lower bound of a likelihood function.
Another efficient method is the EBW approach [1], [2] that is
currently considered one of the most successful discriminative
training techniques for estimating parameters of a HMM mod-
eled with Gaussian mixtures. Initially EBW was introduced
in [2] where it was suggested to modify a discriminative func-
tion by adding a ”constant” everywhere in a probability domain
function in such a way that the traditional BW technique could
be applied.

In this paper, we explore the analogy between BW and
EBW algorithms. We first show that there exists a function as-
sociated with an objective function (called the associated func-
tion) under EBW that is reduced to the auxiliary function used
for maximum likelihood estimates. We also give a generalized
representation for the updates of model parameters by making
use of a differentiable function (such as arithmetic or geometric
mean) on the updated (via an associated function) and current
model parameters. EBW is an iterative algorithm with param-
eters that define the learning rate (or increase in the objective
function) of parameters at every iteration thereby controlling the
rate of convergence. These rules involve special EBW parame-
ters that control the amount of change in an objective function
(e.g. the Maximum Mutual Information Estimation (MMIE)
objective) at each iteration of the algorithm.

Significant efforts in speech community has been devoted to
learning what values of these control parameters lead to better
estimation of parameters of Gaussian mixture in discriminative
tasks. We provide a detailed theoretical analysis of the effect
of these parameters that affect the learning rate during HMM
parameter estimation while providing supporting experimental
results on a large vocabulary speech recognition task.

The same generalized representation used earlier for updat-
ing model parameters during training, can be extended to be
used in the decoding framework as a distance metric, instead
of the traditionally used maximum-likelihood decoding. We
provide experimental results on a phone classification task that
establishes the benefits of using this representation. We also
explore the use of traditional Maximum Likelihood Linear Re-
gression (MLLR) and Maximum A Posteriori (MAP) updates
within this representation. To summarize, this paper demon-
strates the generalizability and versatility of the EBW algorithm
both during training of HMM parameters and as a metric dur-
ing decoding while providing significant improvements in per-
formance on a speech recognition and phone classification task
when compared to the performance of state-of-the-art systems
in those domains.

The rest of the paper is structured as follows. In Section
2, we introduce the generalized representation and establish the
analogy between EBW and BW while providing a family of
EBW update rules. In Section 4, we present explicit formulas to
measure the gradient steepness and explore its use in a decoding
framework. In Section 5 we present application of EBW met-
rics to decoding tasks and extend them to use MAP and MLLR
updates in the decoding metric. Experimental results are pre-
sented in Section 6. We conclude with a summary of the key
messages in this work with suggestions for future work.

2. A New Family of EBW Update Rules
In this section we introduce a new family of update rules for pa-
rameter estimation of HMMs modeled with diagonal Gaussian
mixtures. We also establish the relationship between EBW and
BW algorithms with the use of an associated function.

Assume that data yi, i ∈ I = {1, ..., n} is drawn from
a Gaussian mixture with each component of the mixture de-
scribed by the parameters θj = (µj , σj), where µj is the
mean and σj is the variance od the jth component. Thus
the probability of yi given model θj is zij = zi(θj) =

1

(2π)1/2σj
e−(yi−µj)2/2σj

2
. Let F (z) = F ({zij}) be some

objective function over z = {zij}, and let cij = zij
δ

δzij
F (z).

We will now define the following function that we will call



the function associated with F :

Q(θ′j , θj) =
∑

i

zi(θj)
δF ({zi(θj)})

δzi(θj)
log zi(θ

′
j),

Optimizing this function will lead to closed-form update rules
(that are generally not obtainable if optimizing F directly). Let

{θ̃j} be solutions of
δQ(θ′j ,θj)

δθ′j
= 0.

Note that when the objective F is the log-likelihood function
(e.g., standard MLE estimation in HMM, i.e. the Baum-Welch
method), then Q coincides with the auxiliary function .

In this paper we introduce the following set of iterative rules
for updating the current model parameters θj to their next values
θ̂j (and a subsequent analysis of their properties):

θ̂j(αj) = gj(αj)θ̃j + (1− gj(αj))θj + fj(αj) (1)

Here gj is a differentiable function such that gj(0) = 0 and
fj(αj) = o(αj) where o(ε) implies that limε→0 o(ε)/ε → 0).

In the case gj is identical, one can show that there that the
update rules in Equation (1) also include the following EBW
rules as a special case.

µ̂j = µj(C) =

∑
i∈I cijyi + Cµj∑

i∈I cij + C
(2)

σ̂2
j = σj(C)2 =

∑
i∈I cijy

2
i + C(µ2

j + σj
2)∑

i∈I cij + C
− µ̂2

j (3)

where C =
∑

i cij

αj
.

Indeed, assuming
∑

i cij 6= 0 and αj =
∑

i cij

C
we have

θj(C) = θ̂j(αj) (4)

Here |fj(αj)| < d/C2 for sufficiently large C and for some
constant d. To show this inequality one needs to observe that
µ̃j =

∑
i cijyi∑

i cij
and µ̂j = µj(0)α̃j + µj(1 − α̃j) where

α̃j = α̃j(C) =
∑

i cij∑
i cij+C

and µj(0) is defined as in (2)
for C = 0. This implies statement (4) for the mean param-
eter). Statement (4) for the variance follows from the fact that
σ̃2

j =
∑

i cij(yi−µj)2∑
i cij

and from the linearized equations for vari-
ances in (18) in [3].

Example of applications of non-trivial gj is given in the
next section. Introduction of gj in (1) allows to consider update
rules to which techniques developed in [3] is applicable, and
,specifically, one can prove that iterative applications of rules 1
convergences to a local maximum of the objective function F .

2.1. Geometric Representation of EBW Update Rules

Let us connect models {µj , σj} and {µ̃j , σ̃j} with a curve seg-
ment (which generalizes the straight line segment used by [4]).
Then the following cases for location of an updated model (at
which F increases its value) can be considered: 1) If

∑
i cij >

0 then a step αj > 0 and {µ̂j(αj), σ̂j(αj)} lies on a segment
that connects {µj , σ

2
j } and {µ̃j , σ̃

2
j }. 2) If

∑
i cij < 0 then a

step αj < 0 and {µ̂j(αj), σ̂
2
j (αj)} lies outside of the segment

that connects {µj , σ
2
j } and {µ̃j , σ̃

2
j }. These cases correspond

to cases in [4] where a sign of a step along a gradient was cho-
sen depending on whether F has the minimum or the maximum
at {µ̃j , σ̃

2
j } . The above process is illustrated in Fig. 1.
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Figure 1: Illustration of the new update rules

2.2. Multiplicative Form of Update Rules

In keeping with the generalized representation of update rules,
this section presents the update rules expressed in a multiplica-
tive form (one form of the differentiable function gj). In many
applications (e.g. [4]) a weighted multiplicative form of up-
date rules for variances was considered instead of a weighted
sum (i.e. a geometric mean as opposed to an arithmetic mean
as done in Equation 1). The corresponding update rules are:

θ̌j(α
′
j) = θ̃

α′j
j ∗ θ

(1−α′j)

j . It is easy to see that the multiplicative
form of update rules is equivalent to the EBW family update
rules given in Equation 1. Indeed, for every α′ one can find

such α that the following equality holds: θ̌j = θ̃
α′j
j ∗θ

(1−α′j)

j =

θ̂j(αj) = αj θ̃j +(1−αj)θj and can be solved as: αj =
θ̌j−θj

θ̃j−θj

if θj 6= θ̃j . Also one can easily see that if α′j close to zero then
θ̌j is close to θj and therefore αj also is close to zero. Therefore
[3] implies that F (ž) ≥ F (z) for sufficiently small α′j (where
ž = {žij} and žij = 1

(2π)1/2σ̌j
e−(yi−µ̌j)2/2σ̌2

j ).

3. EBW Gradient Steepness Measurements
The same generalized representation discussed in Section 2 for
updating model parameters during discriminative training, can
be extended and used in the decoding framework as a distance
metric to explain the quality of the model to fit the data. In this
section, we derive the EBW gradient metric and explore differ-
ent model update and learning rate methods within the gradient
metric framework for decoding via HMMs.

3.1. Gradient Steepness Derivation

Using Equation 1 such that θj → θ̂j(C) (where C is inversely
proportional to α) and zi(θj) → ẑi(θ̂j), [3] derives the
linearization formula between F (ẑi(θ̂j)) and F (zi(θj)) for
large C as:

F (ẑi(θ̂j))− F (zi(θj)) = Ti(θj)/C + o(1/C) (5)

Here T measures the gradient required to adapt the initial
model, θj to data xi. [3] also shows that T is always non-
negative and only equals zero when θ̂j is a local maximum of
F (ẑi(θ̂j)). This guarantees that F (zi(θj)) increases per itera-
tion and provides some theoretical justification for using gradi-
ent metrics T and

(
F (ẑi(θ̂j))− F (zi(θj))

)
× C as measures

of quality of fitness of models to data.



A large value in T means the gradient is steep and
F (ẑi(θ̂j)) is much larger than F (zi(θj)). Thus the data is much
better explained by the updated model θ̂j(C) compared to θj .
However a small value in T indicates that the gradient is rela-
tively flat and F (ẑi(θ̂j)) is close to F (zi(θj)). Therefore, the
initial model θj is a good fit for the data.

3.2. Model Update and Learning Rate Extensions

Given an HMM defined by a set of states S = {s1, s2 . . . sN}
and observation sequence O, this HMM can be used in de-
coding tasks to find the most optimal state sequence through
time Q = {q1, q2 . . . qT }. We can define the probability that
ot came from from model θj in state sj as bj(ot). Typically,
bj(ot) is evaluated using standard maximum likelihood (i.e.,
bj(ot) = P (ot|qt = sj)). bj(ot) is evaluated across all frames
and the most optimal state sequence is found via a dynamic
programming Viterbi algorithm. Below, we discuss evaluating
bj(ot) in the gradient metric framework with new learning rate
and model update methods.

3.2.1. EBW Gradient Metric

Instead of scoring bj(ot) using likelihood, we can score it us-
ing the EBW gradient measurement given in Equation 5. Let
us define objective function F (zt(θj)) to be the likelihood of
observation ot given state model θj as F (zt(θj)) = P (ot|qt =
sj). Given ot and initial model θj , we can re-estimate a new
model θ̂j using the EBW update formulas given in Equations
2 and 3. Then, using Equation 5 and the objective function for
F (zt(θj)), we compute the gradient metric score at frame ot,
normalized by the initial F (zt(θj)) as:

bj(ot) =

(
F (ẑt(θ̂j))− F (zt(θj))

)
× C

F (zt(θj))
(6)

In [5], we compared scoring bk(ot) using likelihood and the
gradient metric given in Equation 6 for the recognition of Broad
Phonetic Classes (BPC). Below, we discuss novel learning rate
and model update methods in the EBW framework.

3.2.2. EBW Reduced Variance

In [5], the EBW re-estimate for θ̂j depended both on the adapted
frame ot and the initial model θj . The problem with this
approach is that if (F (ẑt(θ̂j)) has a lot of variance relative
to F (zt(θj)) then the EBW distance criteria in Equation 6
may generate additional errors. Particularly because model re-
estimation is done on a per frame basis, this problem is very
likely. In order to solve this problem, we look to reduce the
variation of the updated model θ̂j by weighting it by a factor
β < 1, found during training, and shifting it by a constant N ,
also determined in training. This gives the updated model as:

βθ̂j + (1− β)N (7)

We explore using this updated parameter estimate given in
Equation 7 in our EBW gradient metric from Equation 6.

3.2.3. MAP Parameter Estimation

Instead of using the EBW parameter update formulas in Equa-
tions 2 and 3, we explore using the MAP [6] parameter esti-
mates in our gradient steepness derivation. We express the MAP
estimates by the following formula, given as an interpolation
between initial and updated model parameters [6]:

µ̂j = α

∑
i∈I cijyi∑
i∈I cij

+ (1− α)µj (8)

σ̂2
j = α

∑
i∈I cij(yi − µ̂j)

2

∑
i∈I cij

+(1−α)((µj−µ̂j)
2+

2βj

C
) (9)

where α =
∑

i cij∑
i cij+C

and βj is function of the initial variance
as defined in [6]. The MAP and EBW mean updates are the
same, while the MAP variance update scales βj (and thus σ2

j )
by 1/C and thus gives less to σ2

j relative to EBW. We explore
using these MAP updates in our EBW gradient metric.

3.2.4. MLLR

MLLR [7] is another common model adaptation technique. In
this work, we explore expressing the updated model θ̂j =
{µ̂j , σ̂

2
j } as a weighted combination of MLLR models and ini-

tial models. In other words

θ̂j = αθMLLR + (1− α)θj (10)

Instead of estimating θMLLR on a per-frame basis, as
in EBW and MAP, we explore estimating θMLLR on a per-
utterance basis. However, the gradient metric using the MLLR
update models is still scored on a per-frame basis.

4. Experiments
4.1. Discriminative Training for Broadcast News

Discriminative training experiments are performed on the
speaker independent English broadcast news transcription sys-
tem. Details on the experimental setup can be found in [1]. We
report results on the rt03, dev04f and rt04 test sets as defined
for the English portion of the EARS program.

We performed experiments testing various members in an
EBW family for transformations where we varied fj and ratio
of αj for means and variances in (1). Specifically, we investi-
gated the following:
1. Linearized update of means: µ̂j = µj(Cj) = µj +∑

i∈I cij(yi−µj)

Cj

2. Ratio of control parameters: Dj/Cj = 1.5 where Dj is Cj

for variance in (3)
3. Low value of control parameters: Cj for each Gaussian pro-
totype is chosen to keep variance positive, e.g. starting from low
Cj = 1 and multiplying Cj by 1.1 until variance becomes pos-
itive. It was observed that the best result occurs when all three
conditions are combined, which also allows for faster training
(See Section 5).

4.2. Recognition of Broad Phonetic Classes (BPC)

Our recognition experiments explore BPC recognition on the
TIMIT corpus. The 61 TIMIT labels are mapped into 7 broad
phonetic classes (BPC) as described in [5]. Each BPC is mod-
eled as a three-state, left-to-right context-independent HMM.
All models were trained on the standard NIST training set. We
train the EBW gradient methods to find the appropriate model
interpolation α and D weights using the dev set. We report
recognition results on both the dev set and the full test set.



5. Results
5.1. Discriminative Training

Table 1 describes test set results in which we iterated over
the discriminative training used in the baseline with modified
EBW (3 above conditions) training for the 1st and 5th iter-
ations. Columns labeled as test name/baseline (for example,
rt04/base ) contain results for baseline MMI training for 8 it-
erations (starting from a ML baseline). Each column labeled
as test name/mixed represents two results. In a line iteration 1
result of the application of a modified EBW method to the ML
baseline is presented. These results show a single iteration in
rt04 mixed achieved a WER of 18.9%, which is similar to the
WER of rt04 baseline that was achieved at the 4th iteration. In
other words, the first iteration of the modified EBW training al-
lows to achieve decoding results that require 2-4 iterations of
the baseline training. At iteration 5, the application of the mod-
ified EBW training to an output of a 4th iteration of the baseline
are presented. These results are slightly better or the same that
were obtained with 8 iterations of the baseline training.

Test Set
Iter rt03 rt03 dev04f dev04f rt04 rt04

base mixed base mixed base mixed
0 13.0 23.2 20.5
1 12.6 12.3 22.4 21.5 19.9 18.9
2 12.3 21.8 19.5
3 12.3 21.4 19.1
4 12.2 21.3 18.8
5 12.3 12.0 21.1 21.1 18.7 18.3
7 12.1 21.1 18.4
8 12.0 21.0 18.5

Table 1: English WER on test sets rt03, dev04f and rt04
These results show that the modified EBW in 1-2 iterations

achieve the same decoding result that can be obtained in 3-4 it-
erations with the baseline method and therefore is much faster.
We did not reproduce results with two or three subsequent it-
erations of modified EBW here since application of a subse-
quent iteration of modified EBW does not leads to significant
improvement of the accuracy. This is because using low C and
D in conditions 1-3 leads to overfitting. In order to avoid over-
fitting one needs to increase C,D significantly if they are run in
consequent iterations with low C, D.

5.2. BPC Recognition

Table 5.2 shows the phonetic recognition error rates for the like-
lihood and gradient metrics, with the best performing metric
indicated in bold. We investigate likelihood decoding using
both initial baseline models and MLLR models, adapted per-
utterance with the number of regression classes optimized on
the dev set. We also explore decoding using the gradient steep-
ness metric, where we explore model updates using EBW, EBW
Reduced Variance, MAP and MLLR on a per-frame basis.

First, notice that the gradient metrics outperform both the
baseline and MLLR likelihoods. This is because, as shown in
Equation 6, the gradient metric captures the relative difference
between the likelihood of the data given an initial model and a
model estimated from the current data sequence being scored.
Particular if the models are poor, the likelihood is only able to
use one set of models, whether adapted or unadapted, and is un-
able to capture the change between initial and updated models.

In addition, when we can control the model learning rate,

Method Dev Test
Likelihood-Baseline Models 17.9 18.7

Likelihood-MLLR 18.1 19.0
Gradient-EBW 17.2 18.2

Gradient-EBW Reduced Variance 16.9 18.2
Gradient-MAP 17.3 18.3

Gradient-MLLR 17.2 18.3

Table 2: BPC Phonetic Error Rates on TIMIT

which is important when using 1 frame for model re-estimation,
the Gradient-EBW Reduced Variance outperforms the other
gradient metrics. Also, the importance of the variance term
for model re-estimation can be observed in the slightly better
performance for the Gradient-EBW metric relative to Gradient-
MAP. Finally, we observe that using 1 frame to do model
re-estimation with the Gradient-EBW metrics offers compara-
ble performance to Gradient-MLLR where the models are re-
estimated per-utterance.

6. Conclusion and Future Work
In the paper we considered a family of EBW update rules that
can be associated with weighted sums of updated and initial
models. We demonstrate the generalizability of the Extended
Baum-Welch (EBW) algorithm not only for HMM parameter
estimation but for decoding as well. We show that there can
exist a general function associated with the objective function
under EBW that reduces to the well-known auxiliary function
used in the Baum-Welch algorithm for maximum likelihood es-
timates. We generalized the representation for model parame-
ter updates by making use of a differentiable function (such as
arithmetic or geometric mean) on the updated and current model
parameters and analyzed their effect on the learning rate. We
provide experimental results on a BPC recognition that estab-
lishes the benefits of using this representation. We also explore
the use of traditional Maximum Likelihood Linear Regression
(MLLR) and Maximum A Posteriori (MAP) updates within this
representation. We plan to continue to study EBW based train-
ing in which EBW control parameters are correlated to gradient
steepness. We also plan to extend results of this paper for mul-
tivariate multidimensional Gaussian mixture densities.
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