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Abstract

For over four decades, our research community has taken re-
markable strides in advancing human language technologies.
This has resulted in the emergence of spoken dialogue inter-
faces that can communicate with humans on their own terms.
For the most part, however, we have assumed that these inter-
faces are static; it knows what it knows and doesn’t know what
it doesn’t. In my opinion, we are not likely to succeed until we
can build interfaces that behave more like organisms that can
learn, grow, reconfigure, and repair themselves, much like hu-
mans. In this paper, I will argue my case and outline some new
research challenges.
Index Terms: speech-based interfaces, dialogue systems

1. Introduction
Speech is the most natural means for humans to communicate;
nearly all of us can talk and listen to one another without special
training. It is flexible; it can free our eyes and hands to attend
to other tasks. Speech is also very efficient; one can typically
speak several times faster than one can type or write. Nowa-
days, with the pervasiveness of landline, cellular, and internet
phones, speech is also one of the most inexpensive ways for
us to communicate. It is therefore not surprising that speech-
based interfaces are in the minds of every techno-visionary and
science fiction writer or movie producer.

Over the past four decades, we have witnessed remarkable
progress in the development of speech input/output technolo-
gies. The introduction in the early seventies and the subsequent
wide-spread use of the stochastic techniques known as Hidden
Markov modeling [39, 25, 24] have resulted in a continuous re-
duction in word error rate while the task complexity continues
to grow [37]. Similarly, the intelligibility and naturalness of
synthetic speech has also improved with time, thanks to corpus-
based techniques and the availability of large corpora [42]. We
are beginning to see the emergence of spoken dialogue systems
that understand and respond to spoken queries [13, 58, 50]. In
some cases, compelling systems are being demonstrated in re-
search laboratories around the world, combining speech with
pen, gesture, and other modalities [38, 20]. Today, our lives are
touched almost daily by systems that can allow us to dial phone
numbers, issue verbal commands, perform transactions, or per-
haps dictate a letter, all using the devices we are born with. As
proud as we should be about the progress that this community
continues to make, however, we are far from reaching human
capabilities of recognizing and understanding nearly perfectly
the speech spoken by many speakers, under varying acoustic en-
vironments, with essentially unrestricted vocabulary. Synthetic
speech still sounds stilted at times, and lacking in real personal-
ity and emotion.

In this paper, I intend to offer a perspective drawn from evo-
lution in computer science, one that views complex systems as
living organisms that can learn, grow, reconfigure, and repair
themselves. I would argue that such a perspective can lead us to
the type of interface that is truly anthropomorphic. I will focus
my discussions on spoken dialogue systems, namely, systems
that integrate several human language technologies – speech
recognition/synthesis, language understanding/generation, and
discourse/dialogue modeling – that can help users solve prob-
lems incrementally and interactively. In the next section, I will
outline what I mean by Organic Interfaces and describe some
of their properties. This will be followed by a discussion of
a few challenges, along with examples to illustrate my points.
Some of the ideas are admittedly half-baked. In many ways,
more questions are raised than are answered. It is my hope that
this paper will trigger some discussion among us that will lead
to further refinements of the ideas and perhaps engender new
directions in our collective research agenda.

2. Organic Interfaces
It is perhaps informative to first examine the evolution of com-
puting and computer science as a discipline [28]. Early com-
puters were used primarily for computing of static functions un-
der static conditions, whose specifications were well understood
(e.g., billing, inventory management, medical records, etc.) The
foundation of computer science is based on logic, and there is
a clear notion of correctness. However, computers today are
fast becoming pervasive, and are often required to operate under
dynamic environments that are constantly changing. Computa-
tion is often augmented with functions such as communication,
sensing, and control. Data of all kinds (audio, video, sensor
readings, natural language text) from noisy, distributed, and un-
reliable sources have to be processed and fused. Increasingly,
interaction with humans is a key aspect of the computers’ func-
tionality. Since we cannot know the details of the environments
in which they will be deployed, nor the behavior of the human
operators, these systems must be able to execute based on in-
complete information and be able to adapt to varying environ-
ments. The optimum solutions may not be definitive, and can
be arrived at only through consideration of a variety of trade-
offs. To make these complex and interconnected systems more
robust, we need to build into them the ability to adapt to dy-
namically changing environments, and to deal with uncertainty.
Recent efforts have gone by the names of autonomic comput-
ing [29], cognitive computing [48], and organic computing [22].
The idea is to incorporate properties of living organisms that can
learn, grow, reconfigure, and recover from errors.

Some of the properties of organic computing systems are
particularly important to the design of interfaces. Organic sys-
tems are robust to changes in the environment and operating



conditions. Some of the characteristics that we may want to em-
ulate in organic interfaces include redundancy and degeneracy
[46], often two sides of the same coin. Many biological systems
are redundant (e.g., kidneys); they possess vastly more capacity
than is necessary for the tasks they are designed to accomplish.
They are also highly degenerate: there are usually many ways
to satisfy a given requirement. For example, we can metabolize
carbohydrates, fats, and proteins, even though the mechanisms
for digestion and for extraction of energy from each of these
sources is quite distinct.

An organic system can evolve over time by learning from
experiences. For humans, learning can often be accomplished
with just a few examples, rather than with voluminous amounts
of data [7]. Through learning, the system can increase its
knowledge base and expand its capabilities. For learning to take
place, it must be self aware and context aware; it must be able
to observe itself in varying operating conditions and modify its
behavior based on this observation. It must also detect what
it doesn’t know, and find ways to incorporate this knowledge
into the system for future use. Context-awareness, learning, and
adaptation are three inter-related properties.

3. Research Challenges
Following this line of thinking, we can reexamine how today’s
speech-based interfaces can be made more organic. In this sec-
tion, I will discuss some of the desirable properties of organic
interfaces, and provide some illustrations of what has been done
in these areas and some of the as-yet-unmet challenges. Since
the space spanned by spoken dialogue systems is very large and
space for this article is limited, I will primarily focus my atten-
tion on two aspects: speech understanding and dialogue man-
agement. As such, I will only address a few of the large number
of challenges.1 I am likely to draw heavily from our own ex-
perience in developing such systems at MIT over the past two
decades. This is a consequence more of familiarity than of en-
thnocentricity.

3.1. Robustness

Human communication is inherently robust. We can understand
spoken input in extremely adverse acoustic conditions, from
talkers with varying amounts of accents, and do so with differ-
ent kinds of input – text, speech, gesture, and facial expressions.
Future systems’ robustness in performance can conceivably be
improved in many dimensions, some of which will be described
below.

3.1.1. Signal Representation

State-of-the-art speech recognition systems can often give good
performance when the acoustic conditions are satisfactory, for
example, when one uses a noise-canceling, head-mounted mi-
crophone in a quiet room. High recognition accuracy has also
been achieved over the telephone for systems with a working
vocabulary of several thousand words [18]. However, these sys-
tems can break down dramatically in the presence of ambient
noise, or when the user changes orientation to or distance from
the microphone. To alleviate the problem of user movement in
an un-tethered environment, one can resort to wireless micro-
phones. But the solution is unwieldy, especially when multi-
ple users are involved, as is the case for meeting transcription.

1See [4] for an excellent discussion of speech recognition and un-
derstanding challenges.

Figure 1: Recognition accuracy as a function of the number of
microphones in a microphone array. There is a modest degra-
dation when multiple competing speakers are present.

Researchers have demonstrated that the use of microphone ar-
rays using beam-forming techniques to capture the desired sig-
nal can significantly improve performance [16]. As an example,
Figure 1 shows the performance improvement as the number of
microphones in the array increases from 1 to 1,000 [52].

While the use of microphone arrays is a promising direction
for achieving robust data capture, one can not help noticing that,
in this instance, the number of transducers is a couple of orders
of magnitude greater than what we are born with. Humans have
a remarkable ability to recognize speech under extremely noisy
conditions, a performance unmatched by current-day speech
recognition systems [32]. Some researchers have explored the
use of auditory models as a recognition front-end [44, 19, 3].
These auditory front-ends typically yield similar performance
to Fourier-based representations for clean speech (e.g., [34]).
However, the auditory-based representations do achieve better
performance when the speech signal has been corrupted by ad-
ditive noise. Partly due to the computational costs, today’s
speech recognition systems have for the most part abandoned
the auditory models in favor of a Mel-frequency cepstral or
a Perceptual Linear Prediction representation that attempt to
mimic some of the known properties of the human auditory sys-
tem [24].

Continued research into the use of auditory models is es-
sential if systems are to achieve human-level performance un-
der varying acoustic conditions. However, these models must be
extended to include binaural hearing, so that the system can bet-
ter handle sound localization and cocktail party effects. As we
acquire more knowledge about the decoding of linguistic infor-
mation beyond the auditory periphery, we should be in a better
position to increase the level of sophistication of the auditory
models, leading to a better understanding of what attributes to
extract, and how to utilize them for recognition and understand-
ing.

3.1.2. Lexical Access

Words in the lexicon can be pronounced differently by different
people. A word like “California” can be pronounced in five,
four, or even three syllables (e.g., “Cal-for-nia.”) At a word
boundary, significant modifications could occur depending on



Figure 2: A pronunciation graph for the word “temperature,”
after phonological expansion has been performed on the lexical
baseform.

the adjacent words. For example, the word-final /s/ in “gas”
can be geminated (as in ”gas station”) or palatalized (as in ”gas
shortage,”) depending on the context. Most speech recognition
systems today do not explicitly model such phonological vari-
ations, but instead rely on context-dependent phone models to
capture them. In a few systems [21], phonological rules are used
to expand the phonemic baseforms into pronunciation graphs,
which are then searched during recognition. However, the re-
sulting graph might be very bushy, thus increasing the number
of hypotheses that must be examined, and consequently the like-
lihood of recognition errors.

An appropriate probabilistic formulation of the phonologi-
cal variations can improve this situation [45]. By utilizing par-
tial feature representations, i.e., leaving some of the less reliable
features unspecified, a simpler, albeit under-specified represen-
tation can be derived, which could be sufficient for lexical de-
coding. Alternatively, one can use such a broad class represen-
tation, together with phonotactic constraints, to initially whittle
down the list of word candidates. These more similar words can
then be distinguished using a more detailed analysis [56]. Re-
cently, this line of investigation has been revived and extended
to continuous speech with promising results [47].

When examining the pronunciation graphs of words in a
typical lexicon, as illustrated in Figure 2, one is often struck by
the fact that the bushiest parts of the graphs typically involve re-
duced syllables. A possible interpretation of this observation is
that the unstressed and reduced syllables are not produced with
as much precision as stressed ones. As a consequence, there
exists a lot of variability surrounding these syllables, as mani-
fested by the many ways these syllables can be pronounced. If
this is the case, then it makes little sense for a system to ex-
plicitly account for the variabilities by enumerating all the al-
ternate pronunciations. It is possible that, to access a word like
“California,” the system should focus on the acoustic-phonetic
properties of the first and third syllables, where the information
is most reliable and thus least variable. The second and fourth
syllable, on the other hand, may serve only as place holders,
whose phonetic forms only need to be specified partially. This
notion of islands of reliability suggests an island-driven lexical
access strategy, in which the search is accomplished by anchor-
ing on the stressed syllables. In this strategy, lexical decoding is
not accomplished in a strict, left-to-right manner, as is the case
with Viterbi or A* algorithms [24]. How such a search strategy
can be formulated formally and implemented efficiently should
be a topic of further research.

3.1.3. Multimodal Interactions

While speech is the most natural, effortless, and efficient way
for humans to communicate, it is not the only way. In daily
interactions, we often rely on pointing, gesture, and writing to
augment speech. There are certainly occasions when speech
would not be appropriate, as when we attempt to take notes dur-
ing a meeting. To provide a full range of interactions and add

Figure 3: A schematic plot, as a function of time, of the sequence
of words determined by a speech recognizer, and the interpre-
tation of the object and its target location determined from the
visual signal.

redundancy, modalities such as pen and gesture should be in-
cluded to augment and complement speech. Interpreting multi-
modal inputs poses several challenges. First, the multiple inputs
need to be understood in the proper context. When someone
says, “What about that one?” while pointing at an item on the
shelf, the system must interpret the indirect referencing in the
speech signal using information in the visual channel. In some
cases, timing information may be crucial. As illustrated in Fig-
ure 3, proper interpretation of the object and the target location
may depend on the system’s ability to correlate the information
in the acoustic and the visual channels. In addition, the system
must be able to handle uncertainties, since object recognition
can be error prone. Past research on multi-modal understand-
ing has focused primarily on the integration of speech and pen-
based gesture, and as such is event driven, i.e., the pen activity
is registered by clicking. By continuously tracking speech, ges-
ture, and gaze activities, maintaining relative timing informa-
tion on each channel, and using context to resolve conflicts, one
can hopefully achieve robust multi-modal understanding.

Proper modality selection can also significantly improve
information presentation. For example, a presentation might
choose a graphical modality for numeric data, a speech synthe-
sizer to deliver breaking news; and textual summaries for more
detailed descriptions. On the output side, a multimodal inter-
face must be able to generate natural speech and integrate it in
real-time with facial animation, in the context of a larger conver-
sation. For intuitive dialogues, the system should support user
interruption, back-channel, and other cues that are common in
human dialogues.

Our own research on a multimodal restaurant domain ap-
plication has allowed us to explore a number of design issues
related to both multimodal input (e.g., drawing a line along
a street on a map while asking, “What restaurants are on this
street?”), and multimedia output, interfacing with Google maps
to provide richly informative visual feedback, which in turn re-
duces the importance of verbal summarization [20]. To provide
an integrated search in multimodal understanding, Johnston and
Bangalore [26] have developed a novel strategy for tight cou-
pling between speech and mouse clicks via a joint interpretation
within a weighted finite state transducer (FST) framework. An-
other example of a rather unique multimodal dialogue system is
WITAS [30] which allows the user to interact with a simulated
robotic helicopter, via speech and mouse clicks on a map. The
user can instruct the virtual helicopter to fly to different loca-
tions, follow vehicles, and deliver goods.

For the multi-modal interaction to be effective, we must de-
velop a unifying linguistic formalism that can describe multi-
modal interactions (e.g., “Move it from here to here”), along
with integration and delivery strategies. For output generation,
the system must decide when to use which modality, a deci-



sion that could be based on the user’s cognitive load. The sys-
tem will also need to handle trans-modal interactions, in which
one mode is transformed into another (verbally summarizing a
weather map, for example).

3.2. Establishing Context

Context setting is an important aspect of spoken language com-
munication. Knowing that we are speaking in a noisy environ-
ment, for example, enables us to adapt and disregarding the in-
terference, whether it be traffic noise, music, or competing talk-
ers. Knowledge about linguistic constructs enables us to favor
one set of words over another (e.g., ”euthanasia” vs. “youth in
Asia”). Discourse knowledge is crucial for us to interpret the
meaning of sentences based on previous parts of the conversa-
tion. For example, there are many ways to interpret the user
query, “What about Japanese?,” including it’s culture, geogra-
phy, food, weather, etc. But the question would be unambiguous
if it is known that the previous sentence is “Where is the nearest
Chinese restaurant?”

Much work has been done by the research community on
context setting. In speech recognition, for example, the use
of context-dependent phone models, n-gram language models,
and trigger-based language models are all attempts at establish-
ing the context [24]. In recent research transcribing Broadcast
News, some researchers pre-segmented the input signal to mark
changes in environment and talker in order to improve speech
recognition performance [8]. A discourse component is typi-
cally included in a spoken dialogue systems to help establish
the context [58]. However, there is much more to be done; I
will briefly describe a couple of ideas in this section.

A common practice in spoken language interface design is
the assumption that speech is whatever a microphone picks up.
This is clearly not the case in our everyday life, where our ears
are bombarded with a large variety of sounds, some bearing lin-
guistic information and others not. One simple solution would
be to use a “push to talk” mechanism to ensure that the system
only listens to the signals that it should process and interpret.
However, this can be cumbersome for the user, and difficult to
implement for applications such as processing meeting record-
ings. Besides, the non-speech intervals may contain useful in-
formation that would be helpful for speech decoding.

A promising approach would be to process the entire audio
signal, segmenting it into acoustically homogeneous chucks,
and classifying each segment into different categories – speech,
music, speech with background music, two people speaking si-
multaneously, etc. This kind of auditory scene analysis [14] can
potentially provide a rich description of the acoustic signal such
that the appropriate processing steps can then be taken.

3.3. Adaptation

Much has been done in the area of adapting an interface to the
environment in which it operates. For example, both on-line and
off-line adaptation techniques have been applied to good effect
to minimize the mismatch between the training data and the test
data, whether it be the result of differences in the environment,
speaker, or language model [24].

The development of conversational systems shares many of
the research challenges being addressed by the speech recogni-
tion community for other applications such as speech dictation
and spoken document retrieval, although the recognizer is often
exercised in different ways. For example, in contrast to desktop
dictation systems, the speech recognition component in a con-
versational system is often required to handle a wide range of

channel variations. Increasingly, landline and cellular phones
are the transducer of choice, thus requiring the system to deal
with narrow channel bandwidths, low signal-to-noise ratios, di-
versity in handset characteristics, drop-out, and other artifacts.

Another problem that is particularly acute for conversa-
tional systems is the recognition of speech from a diverse
speaker population. In the data we collected for JUPITER – a
telephone-based spoken dialogue system [57], for example, we
observed a significant number of children, as well as users with
strong dialects and non-native accents. The challenge posed
by these data to speaker-independent recognition technology
must be met [33], since conversational interfaces are intended
to serve people from all walks of life.

A solution to these channel and speaker variability prob-
lems may be adaptation. For applications in which the entire
interaction consists of only a few queries, short-term adapta-
tion using only a small amount of data would be necessary. For
applications where the user identity is known, the system can
make use of user profiles to adapt not only acoustic-phonetic
characteristics, but also pronunciation, vocabulary, language,
and possibly domain preferences (e.g., user lives in Boston,
prefers aisle seat when flying).

However, there is much more that could be done. For exam-
ple, the interface should be able to adapt to the choice of words
and grammar of a user, in order to improve its understanding
capability. To make the interaction more productive and enjoy-
able, it could also learn the likes and dislikes of the user and
make suggestions when appropriate.

3.4. Learning

Over the past several decades, we have steadily seen
stochastically-motivated learning techniques being applied to
human language technologies. Hidden Markov modeling, for
example, illustrates how powerful stochastic techniques can be
used to perform speech recognition [25], language understand-
ing [40, 36, 55], and machine translation [6]. By formulating
a statistical model of sounds and words and using training data
to estimate model parameters, the community has been able to
dramatically increase both the performance and the complexity
of the systems.

The taxonomy of learning as it applies to speech-based in-
terfaces can be quite complex. At one extreme, the system could
learn by observing user behaviors over time, and then making
use of a statistical model of observed patterns to bias future de-
cisions. The user might not even be aware that the system is
altering its model of the world. Alternatively, the system may
need to actively engage the user in dialogue in order to learn
their preferences explicitly or to acquire new knowledge about
the world. Finally, the system may want to learn user behavior
explicitly through imitation. Some of the learning can be done
off line, whereas other forms must be done during actual usage.

Note that passive learning is closely related to the issue of
adaptation. Take speaker adaptation, for example, where the
system typically updates the acoustic model parameters incre-
mentally during usage to tune them to the speaker’s voice char-
acteristics. Any system which involves enrollment can in theory
also benefit from repeat usage, learning not only low-level voice
characteristics, but also higher level features such as their lan-
guage usage patterns or even preferences such as a favorite cui-
sine or a bias towards cheap restaurants [51]. Such knowledge
can be used then to alter information presented in summative
responses when a large set of database items match a specified
constraint. An interesting example of tailoring response gener-



ation content to a user model in the flight domain is described
in [1].

3.4.1. Statistical Dialogue Management

Statistical methods, and more generally machine learning tech-
niques, have been unusually slow to penetrate dialogue manage-
ment in spoken dialogue systems. The main reason is that such
techniques depend critically on large corpora of manually anno-
tated data. For dialogue systems, this translates into the need for
detailed, annotated log files for thousands of user dialogues with
a pre-existing system. Another roadblock has been uncertainty
in how to formulate a tractable machine learning paradigm for
the highly heuristic task of dialogue management. A powerful
method for side-stepping the data collection issue is to collect
synthetic data from user simulation runs [9, 43], although one
ultimately has to confirm that the results carry over to real users.
The beauty of simulation is that the user’s intended actions are
known, so that no manual annotation is required. And the devel-
oper can simulate compliant or non-compliant behavior, known
or unknown vocabulary choices, etc., in controlled experiments,
generating enormous amounts of training data effortlessly.

Levin et al. [31] were pioneers in introducing machine
learning techniques combined with user simulation, in exper-
iments where they showed that a reasonable policy could be
learned in the flight domain through trial and error. Bayesian
reinforcement learning, Markov Decision Processes (MDP’s),
and Bayesian Belief Networks (DBN’s) [35] have evolved
into the more complex “POMDP” (Partially Observable MDP)
model [53], which is beginning to catch on as a method to re-
place heuristic rules governing dialogue management decisions.
However, it is as yet unclear whether these techniques can scale
to complex domains.

Some researchers have utilized machine learning tech-
niques to sovle a restricted part of the dialogue management
problem, rather than attempting to completely replace an exist-
ing dialogue manager. For example, user simulation data can be
used to train RIPPER rules [12], to produce a rule-based system
for deciding whether to invoke implicit or explicit confirmation,
or to seek a spoken spelling of a potentially unknown word [15].
Bohus and Rudnicky [5] have developed a data-driven approach
which integrates information across multiple turns to aid in the
decision process for implicit vs explicit confirmation. Wu and
Seneff [54] showed improved speech understanding in a spoken
dialogue system by using a genetic algorithm to bias N -best se-
lection towards utterances whose speech act is primed due to
dialogue context. Straightforward machine learning techniques
have also been successfully applied to the task of deciding
whether to reject a user’s utterance due to suspicions of gross
recognition error [17]. Johnston and Bangalore [27] borrowed
techniques from the statistical machine translation community
to train a set of “edit rules,” leading to more robust handling of
multimodal inputs. Through an automated intent-mapping algo-
rithm, Tur [49] has shown how annotated data from one domain
can be used to build an initial speech understanding model for a
new but related domain.

3.4.2. Interactive Learning

The type of learning discussed above is largely achieved off-line
in that the data are typically used in a training phase whereby
the parameters of the systems are adjusted prior to actual use.
By relying on a large corpus, the system development must be
preceded by a data collection phase, and as such the resulting
systems tend to be highly task dependent. This raises the ques-

Figure 4: The percentage of unknown words in previously un-
seen data as a function of the size of several training corpora
used to determine the vocabulary empirically [23].

tion about portability, i.e., can we generalize from one task to
another without having to be continually on the tread-mill of
data collection?

In many other cases, on-line, interactive learning is criti-
cal. Consider the problem of unknown words, for example. The
traditional approach to spoken language recognition and under-
standing research and development is to define the working vo-
cabulary based on domain-specific corpora. However, experi-
ence has shown that, no matter how large the size of the train-
ing corpora, the system will invariably encounter previously un-
seen words [23]. This point is illustrated in Figure 4. For the
Air Travel Information System, or ATIS, task, for example, the
probability of the system encountering an unknown word, is
about 0.002, even after encountering a 100,000-word training
corpus. In real applications, a much larger fraction of the words
uttered by users will not be in the system’s working vocabulary.
This is unavoidable partly because it is not possible to anticipate
all the words that all users are likely to use, and partly because
the database is usually changing with time (e.g., new restaurants
opening up).

In the past, researchers have not paid nearly enough at-
tention to the unknown word problem. If the system’s work-
ing vocabulary is open, then researchers could either construct
generic “trash word” models and hope for the best, or ignore the
unknown word problem altogether and accept a small penalty
on word error rate. If unknown words are always going to be
present, then a spoken dialogue system must be able to cope
with unknown words, because ignoring them will not satisfy the
user’s needs - if a person wants to know how to go from the train
station to a restaurant whose name is unknown to the system,
they will not settle for a response such as,“I am sorry I don’t
understand you. Please rephrase the question.” For a system to
be truly helpful, it must be able not only to detect new words,
taking into account acoustic, phonological, and linguistic ev-
idence, but also to adaptively acquire them, both in terms of
their orthography and linguistic properties. In some cases, fun-
damental changes in the problem formulation and search strat-
egy may be necessary.

What is needed, then, is a generic capability to handle un-
known words, beginning with detection, continuing on to dis-
ambiguation sub-dialogue, and terminating with an automatic
update of the system such that it now knows the new word ex-



Figure 5: An illustration of the MIT City Browser, which can provide information about restaurants, landmarks, and transportation for
several major cities in the U.S.

plicitly and understands its usage. For example, Chung et al. de-
veloped a mixed-initiative spoken dialogue system that can flex-
ibly incorporate new words from users and from dynamic infor-
mation sources retrieved from the Web [11]. Specifically, the
system enlists a software agent to seek the data entries from
the Web, given the current dialogue context. Subsequently, the
system updates its vocabulary and language models with the
newly retrieved data subset. A desirable feature of the sys-
tem is that changes in the database content via updates, such
as new restaurants, do not require re-compilation of the main
finite-state transducers (FSTs) in the recognition or the natural
language parser. As an illustration, a user may ask, “What is
the number of Flora in Arlington?”. The system initially under-
stood the query as “What is the number of ¡unknown word¿ in
Arlington.” Based on the context, the system will retrieve all the
restaurants in Arlington from a restaurant database, and select
Flora based on its acoustic similarity to the input. It will then
respond to the user with the requested information, and updates
the speech recognition and language understanding components
so that the previously unknown word can be used subsequently.
This can all be done on one sentence.

Thus far, the new word acquisition problem has only been
attempted in cases where the new word is assumed to be a mem-
ber of a previously defined class, such as a user or an establish-
ment name [10, 20]. In the future, we can anticipate systems
whose knowledge base can slowly grow through direct inter-
action with end users. The system would logically guide the
user through a subdialogue asking for information to fill each
slot in a new database entry. Such knowledge could also be
acquired multimodally, by allowing the user to speak and type
the new word, or by taking advantage of existing handwriting
recognition systems for pen-based script input of the new word.

Advancing to the level of an entirely new class of objects is far
more challenging. Pioneering work by Roy [41] has begun to
address the problem of acquisition of knowledge through multi-
modal input – by having a robot learn to associate spoken words
with attributes associated with objects pressented to its visual
field.

3.4.3. Learning by Imitation

In learning by imitation, the user can simply show the systems
how to performance certain tasks, and in most cases, provide
a spoken commentary to be associated with that task for future
use. For example, a complex sequence of clicks on a menu
hierarchy in a smart phone can be directly linked to the verbal
command “enable Bluetooth.”

There has been, to my knowledge, very little prior research
within the speech community in the area of learning by imi-
tation. Most notable however is the recent research by James
Allen and his team [2] involving walking through a sequence
of steps at a Web page in order to teach the system how to
search and summarize from complex linguistically understood
queries. Task models are constructed by fusing together infor-
mation from language understanding with the observed demon-
stration. The active learning process allows the system to be
able to master the process from a single example, due to the lin-
guistic scaffolding provided in accompanying spoken dialogue
interaction. This area seems ripe for new ideas emerging out
of the space of mobile devices, now that it is feasible to run
speech recognition systems on these devices. This is especially
appealing because such devices are becoming so capable that
menu-driven approaches to accessing services are beginning to
become too unwieldy to be appealing.



4. Concluding Remarks
In this paper, I try to argue that future interfaces should behave
more like a living organism that can provide robust performance
in a wide range of operating conditions, learn from their expe-
riences and adapt to the environment, user, and task. Some of
the challenges of developing such an interface are being pur-
sued by the research community with good results, while others
will need increased attention. It is my hope that some of the
ideas may find their way onto the research agenda of others in
the community, in addition to my own.

Figure 5 shows an example of a spoken dialogue interface
under development at MIT that possesses some of the properties
that I have discussed in this paper. The interface is integrated to
a number of online information sources. The system is context-
aware in that it will customize its domain knowledge based on
a user’s specification of a particular city of interest. Pen ges-
ture is integrated with speech to respond to inquiries such as,
“Are there any Italian restaurants in this area?” A user can cus-
tomize the system by adding personal landmarks. The system
can also monitor the characteristics of the speaker, and can bring
in speaker-specific models to improve performance. This is ad-
mittedly only a small step towards the realization of an organic
interface. Nonetheless, it provides a platform for us to explore
some of the challenges described in this paper.
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