
A Dynamic Vocabulary Spoken Dialogue Interface

Grace Chung�, Stephanie Seneff�, Chao Wang�, Lee Hetherington�

�Corporation for National Research Initiatives
1895 Preston White Drive, Suite 100, Reston, VA 22209

gchung@cnri.reston.va.us

�MIT Computer Science and Artificial Intelligence Laboratory
The Stata Center, 32 Vassar Street, Cambridge, MA 02139

�seneff,wangc,ilh�@csail.mit.edu

Abstract

Mixed-initiative spoken dialogue systems today generally allow
users to query with a fixed vocabulary and grammar that is deter-
mined prior to run-time. This paper presents a spoken dialogue
interface enhanced with a dynamic vocabulary capability. One or
more word classes can be made dynamic in the speech recognizer
and natural language (NL) grammar so that a context-specific vo-
cabulary subset can be incorporated on-the-fly as the context of the
dialogue changes, at each dialogue turn. Described is a restaurant
information domain which continually updates the restaurant name
class, given the dialogue context. We examine progress made to the
speech recognizer, natural language parser and dialogue manager in
order to support the dynamic vocabulary capability, and present pre-
liminary experimental results conducted from simulated dialogues.

1. Introduction
Mixed-initiative spoken dialogue systems today are generally re-
stricted to a fixed vocabulary, determined prior to run-time. This
mandates that the lexicon and grammar must anticipate in advance
all entities that a user might refer to. If database contents shift, nec-
essarily, all the linguistic structures have to be re-compiled to reflect
the latest updates in the content sources.

This paper presents a spoken dialogue interface enhanced with
a dynamic vocabulary capability. One or more word classes can
be made dynamic in the speech recognizer and natural language
(NL) grammar so that a context-specific vocabulary subset can be
incorporated on-the-fly as the context of the dialogue changes, at
each dialogue turn.

The underlying objective of this work is to build systems that
can flexibly incorporate new words from users and from dynamic
information sources across the Internet. We envision a framework
where, because the dialogue interface does not have complete a pri-
ori knowledge of all possible data items that a user might ask, it
enlists an agent to seek the data entries from the Web, given the
current dialogue context. Subsequently, the system updates its vo-
cabulary and language models with the newly retrieved data subset.
Part of this vision is the enabling of an open vocabulary in which
the system, through various means, attempts to provide an answer
even when the queried name has never been encountered before.

�The research at CNRI is sponsored in part by SPAWAR SSC-SD. The
content of this paper does not necessarily reflect the position or policy of the
Government, and no official endorsement should be inferred. �The research
at MIT is supported in part by an industrial consortium supporting the MIT
Oxygen Alliance.

Here, we present a system that partially implements this vi-
sion in the context of a restaurant information domain, whereby
the restaurant name word class is continually updated with a sub-
set of restaurant names, given the context accumulated in the di-
alogue history. One immediate advantage is that the vocabulary
size for this narrow domain task is much smaller when most of the
restaurant names are excluded from the vocabulary at any one time,
leading to improved recognition performance. Secondly, changes
in the database content via updates, such as new restaurants, do not
require re-compilation of the main finite-state transducers (FSTs)
in the recognition or the natural language parser. To the knowl-
edge of the authors, this is a first mixed-initiative spoken dialogue
system to demonstrate a dynamic vocabulary capability integrated
in the speech recognition and understanding components, designed
to update in real-time at every turn as the context of the dialogue
changes. The framework even has the capability of augmenting the
vocabulary on-the-fly during a single user query, by utilizing con-
text information available within that same query in a second pass
through the recognition search. The vocabulary can in principle be
open (i.e., determined from content sources at run-time).

The remainder of this paper will describe the procedures we
used to implement the dynamic vocabulary capability, and provide
results for simulated user data. We first describe a speech recog-
nizer that integrates an out-of-vocabulary (OOV) word model with
a dynamic word class that is updated before each user turn. The
vocabulary items in the dynamic word class are augmented with
identifier tags for special handling as dynamic sequences in the NL
parser. We will elaborate on the dialogue manager’s role for find-
ing the context-specific vocabulary subset given the dialogue con-
straints. Then, we introduce a specialized server responsible for
performing FST operations to create dynamic class FSTs to be up-
loaded by the recognizer. We also describe the two-pass recognition
procedure where the novel restaurant name is first recognized as an
unknown word, and local context supplies the dynamic vocabulary
options for the second pass. Finally, we present some preliminary
experimental results conducted from simulated dialogue runs.

2. Dynamic Vocabulary Technology

2.1. Speech Recognizer

The speech recognizer employs technology first described in [1],
which introduced an efficient technique for addressing dynamic
changes to a grammar while preserving cross-word context-
dependent phonological constraints. The implementation allows ar-
bitrary dynamic components to FSTs, while preserving the cross-

<dynrestaurant> </dynrestaurant>

restaurant 1

restaurant 2

restaurant n

Restaurant name
dynamic class

<dynrestaurant> </dynrestaurant>

restaurant_oov

Unknown restaurant name
dynamic class

$Restaurant_OOV

$Dynrestaurantnumber for please

Top-level FST

Figure 1: FSTs used in dynamic vocabulary recognition. Top: the
top-level FST with dynamic splice points to the restaurant names
class and unknown restaurant name model. Middle: unknown
restaurant name model. Bottom: dynamic restaurant name class.

word effects. The overall FST is partially compiled prior to run-
time, reducing latency.

In the restaurant information domain, the only dynamic class
used thus far is a restaurant name class ($Dynrestaurant), as il-
lustrated in Figure 1. The $Dynrestaurant class maps context-
dependent phone sequences to restaurant names. The $Restau-
rant OOV model contains only the dummy word “restaurant oov,”
representing an unknown restaurant name, which embeds a phonetic
model for generic unknown words, as described in [2]. Hence, when
a user mentions a restaurant name in a query, it can be recognized
as one of the � restaurants in the dynamic class or as an unknown
name (“restaurant oov”).

On output, the contents of these word classes are surrounded
by the labels �dynrestaurant� and �/dynrestaurant�. Serving pri-
marily as markers for the NL component (discussed later), these
have no acoustic correlates, but are needed in the language model
training procedure. Within the static component, the recognizer
also supports a generic unknown word (�unknown�) using the
same phonetic model as “restaurant oov.” Thus, the language model
would give preference to the “restaurant oov” word based on the
training data.

During dialogue, the $Dynrestaurant class is continually up-
dated by a dynamic vocabulary server (see Section 2.3). Prior to
each recognition pass, the speech recognizer detects the occurrence
of an updated dynamic class FST, and reloads the dynamic class
before beginning the next user utterance.

2.2. NL Understanding of Open Vocabulary

The � -best output of the speech recognizer, containing the sur-
rounding dynamic restaurant class markers, are input to TINA, the
NL understanding component [3]. TINA was augmented to accom-
modate any sequence appearing between the markers, assigning
the sequence to a “restaurant name” semantic category. A special
pre-terminal “any sequence” category has been introduced for this
purpose. Through the context-free rules, this sequence is bounded
by the left and right dynamic restaurant name markers, and parses
under a parent “dynamic restaurant name node.” TINA treats the
unknown word “restaurant oov” in a similar way, passing “restau-
rant name: restaurant oov” to the dialogue manager to process ac-
cordingly.

speech
input

system
output

Speech
Recognizer

NL Understanding
& Context Tracking

Dialogue
Manager

NL
Generation

TTSnbest
list

semantic
frame

reply
frame

reply
string

restaurant
name list

letter-to-sound FSTdictionary
baseforms

dynrestaurant
FST

Dynamic FST
Server

Figure 2: A schematic showing interaction of each component in
the dynamic vocabulary system implementation. Highlighted is the
addition of a dynamic FST server.

One issue that arose is the fact that users will often refer to
restaurant names in an abbreviated form. To address this prob-
lem, aliases were generated for each restaurant using a rule-based
method, proposing shortened alternatives that a user would be likely
to speak instead of the restaurant’s full name. Mappings from the
aliases to the database entry are handled by a separate look-up in
the dialogue manager.1

2.3. Dialogue Management and Dynamic FST Creation

A critical part of realizing the dynamic vocabulary system involves
extending the dialogue management functions to trigger the switch-
ing of dynamic grammars where necessary, and the integration of
operations for retrieving and updating new restaurant names and
pronunciations, to be uploaded by the recognizer. These tasks
are coordinated through augmentations to scripts originally imple-
mented within the Galaxy framework [4]. A schematic of this pro-
cess is illustrated in Figure 2.

A specialized dynamic FST Galaxy server has been imple-
mented to perform the operations necessary to create the dynamic
grammar (shown as the dynrestaurant FST in Figure 2) to be spliced
into the static FST at recognition time. Formally, the FST structure
is represented as a sequence of compositions: � � � Æ � Æ � Æ	,
successively cascading context-dependent labels (�), phonologi-
cal rules (�), phonemic baseforms (�), and language models ().
Given a list of restaurant names, the dynamic FST server will look
up the dictionary for existing pronunciations or employ a letter-to-
sound module [5] for unknown words. This is composed with a
precomposed � Æ � FST, and then saved for the recognizer to later
upload. The dialogue manager, together with the hub scripting lan-
guage, are central in enabling the dynamic update mechanisms to
occur at the appropriate times.

At least two distinct scenarios are envisioned. One possibility
is that the speaker cumulatively supplies constraints throughout the
dialogue, guided by information given in the system replies, as il-
lustrated in the first example dialogue of Table 1. For every turn, the
dialogue manager filters the database on the constraints, summariz-
ing the results in a system reply. If filtering has yielded a reason-
ably small set of restaurants (� � �), the list of restaurant names
and their plausible aliases are immediately sent to the dynamic FST
server, which compiles them along with their respective baseforms
into the dynamic recognition grammar. It is expected that the user is
likely to query a restaurant included in the subset, particularly any
that have been mentioned explicitly in the system reply.

1Future work will address the problem of automatic generation of such
restaurant aliases.

In a second scenario, the speaker may ask about a restaurant not
included in the current dynamic restaurant name grammar, as shown
in the second example dialogue of Table 1. This could occur at the
beginning of the dialogue, where no prior context has been given,
or at any time when the user decides to introduce a new restaurant
in a new location. Whenever the user has supplied sufficient context
within the same utterance, a two-pass approach can be invoked, as
described below:

1. The first pass recognition detects an unknown “restau-
rant oov” word.

2. The attribute-value pairs, generated by the NL server, asso-
ciated with the recognition output are passed to the dialogue
manager, signifying an unknown restaurant query. Addi-
tional user-specified constraints from the same utterance are
used to filter the database for a possible subset.

3. If a non-empty database retrieval succeeds, the dialogue
manager enables the dynamic FST server to compile a new
dynamic grammar with the new name subset.

4. Immediately following, Galaxy script operations trigger the
speech recognizer to conduct a second Viterbi pass on the
same input waveform. Because the dynamic class has been
freshly updated, a reloading takes place before the second
Viterbi pass. Because SUMMIT caches acoustic model scores
for the whole utterance, the second pass can be very rapid,
since most models have already been evaluated.

5. The second Viterbi pass may resolve the unknown restau-
rant into one from the existing dynamic class. The dialogue
manager is then re-engaged to prepare a reply frame for an-
swering the now fully understood query.

The above describes each step involved when a name intro-
duced by the user can be resolved. However, under various circum-
stances, the unknown word may not be resolved because (1) the
user has not specified other parameters to narrow the entries, (2) the
user-specified constraints yield an empty database output, or (3) the
second Viterbi pass persisted with selecting an unknown word in-
stead of a known restaurant. These situations could be further com-
plicated by recognition errors elsewhere in the utterance. In each
case, our initial implementation has resorted to prompting the user
for more context. Future work could address this by soliciting the
names through error recovery subdialogues.

At the beginning of each dialogue, the recognizer dynamic
class is empty. As a user progresses through the conversation,
the dynamic grammar grows to include new restaurant names that
are brought into focus over time, based on mentioned constraints
(for example, neighborhoods or cuisines specified.) The restau-
rant names are generally flushed out between dialogues, or when
a user says “clear history.” In this initial implementation, the dia-
logue manager is connected to a static database with a fixed number
of entries. However, even dynamic changes to the database itself
could be supported in this framework.

3. The Restaurant Information Domain
Examples and experiments in this paper are drawn from a restau-
rant information system for Boston. Obtained from an on-line
source, the content offers information for 982 restaurants, located
in 106 cities in the Boston metropolitan area (e.g., Newton, Cam-
bridge) and 45 neighborhoods (e.g., Back Bay, South End). Individ-
ual restaurant entries contain detailed information such as cuisine,
phone number, opening hours, credit-card acceptance, price range,
handicap accessibility, and menu offerings. Latitude and longitude
information for each restaurant location have also been obtained.
There are on average 1.23 aliases per restaurant name.

Dialogue 1
SIM: I would like a restaurant in The South End.
SYS: There are 42 restaurants in The South End. Some of the

options are American, and Nouvelle Cuisine. Many of
them are on Columbus Avenue, and Tremont Street.

SIM: Okay how about a cheap American restaurant on Colum-
bus Avenue?

SYS: There are 3 cheap American restaurants in The South
End on Columbus Avenue. Your choices are Charlie’s
Sandwich Shoppe, Bob The Chefs, and Grill Fish.

SIM: What is the phone number of Grill Fish?
SYS: The phone number of Grill Fish is 617-357-1620.

Dialogue 2
SIM: Tell me the address for Atasca in Cambridge.
SYS: Atasca is located at 50 Hampshire Street in Kendall

Square, Cambridge.

Table 1: Two examples of simulated dialogues. The simulated in-
puts (SIM) are processed to produce system responses (SYS).

3.1. Experiments Using Simulation

A simulation server combined with a text generation capability, de-
scribed in [6], is used to pose as a synthetic user interacting with the
spoken dialogue system in real-time. The simulation framework can
employ both a text-mode and a speech-mode interaction, enlisting
a text-to-speech component to create synthetic user speech input.
This integrated simulation module, using dialogue state informa-
tion, database contents, and a rule-based recursive text generator,
can produce a wide variety of user inputs. Table 1 illustrates typical
simulated inputs, along with the system replies.

By running repeated iterations, thousands of dialogues have
been generated both for debugging purposes, and to produce a cor-
pus for training the recognizer language models and statistical NL
grammar. To support language model training with a dynamic class,
the simulator automatically generates sentences with the appropri-
ate identifier tags. TINA will parse sequences bounded by the tags
under a “dynamic restaurant name” category, and modify the lan-
guage model training data with the dynamic $Dynrestaurant class.

In this paper, we examine system performance by creating tar-
geted synthetic dialogues and comparing recognition error rates. In
the following experiments, the performance of the dynamic vocab-
ulary speech recognizer is compared to one which, instead of using
a dynamic class, includes all the available restaurant names within
a static grammar.

The speech recognizer bigram and trigram models are trained
solely on simulated data. Because the test data are also generated
from the simulator, they are well matched with the training data, al-
though they are not guaranteed to have appeared in training due to
the multitude of random variations generated from simulation. The
recognizer was trained on over 8000 sentences, and has a static lex-
icon of about 1400 words. Considering both names and aliases, the
dynamic word class has a maximum of around 1100 words, yield-
ing a 2500 word vocabulary for the fixed vocabulary recognizer.
The acoustic models are trained solely on telephone speech data
from previously collected weather and flight information retrieval
domains. For now, since the number of available restaurants is fixed,
all names and aliases have been added to the dictionary, with miss-
ing baseforms pre-generated via a letter-to-sound module [5].

The synthetic input is produced by the Festival speech synthe-
sizer [7]. To investigate system performance, two kinds of dialogues
are created. In experiment I, the simulated user successively queries
the system until a small subset of restaurants are provided in the
system reply. The user will proceed to query an attribute (e.g., the
phone number) of individual restaurants that were mentioned. The

Full Corpus Names Subset
WER SER WER SER

System 1 (Full) 12.6 54.9 14.3 65.7
System 2 (Dyn) 9.5 50.8 7.5 48.3

Table 2: Recognition results for 315 utterances in experiment I.

WER SER CER Task Success Rate
System 1 (Full) 12.0 62.9 19.6 51.3
System 2 (Dyn) 14.3 68.0 24.3 52.8

Table 3: System performance for 197 utterances in experiment II.

restaurant names in the queries should have been dynamically up-
loaded based on the context given in preceding queries. In experi-
ment II, we simulate scenarios where the user queries a previously
unknown restaurant, while providing context within the same ut-
terance. To simplify our experiment, the dynamic class only con-
tains restaurant names loaded from the current context. We assume
no prior contexts are given or no previously mentioned restaurant
names survive in the dynamic restaurant FST.

For both experiments, the test corpus is created by running the
system with the simulated user responding to the system replies on-
the-fly. Results using a speech recognizer with the full vocabulary
are obtained by rerunning the saved synthesized utterances.

3.2. Experiment I: Utterances with Prior Context

Table 2 displays system performance for a set of dialogues contain-
ing 315 utterances. Word error rates (WER%) and sentence error
rates (SER%) are quoted for the entire corpus, and for the subset
(143) which contains the proper nouns only. System 1 shows the
system with a full vocabulary static grammar. System 2 shows the
dynamic vocabulary results. As mentioned, the input sentences are
well matched to the language model training data, and lack the ef-
fects of spontaneous speech inherent in real speech. On the other
hand, some of the errors stemmed from incorrect pronunciations of
the restaurant names by the synthesizer.

As expected, significant gains can be obtained by a dynamic vo-
cabulary system because of a smaller working vocabulary at any one
time during the dialogue. For the full test set, WER is reduced from
12.6% to 9.5%, and, for sentences that contain the proper names,
from 14.3% to 7.5%.

3.3. Experiment II: Utterances without Prior Context

In experiment II, (Table 3), it is observed that a degradation in
WER results from the two-stage procedure for eliciting the restau-
rant name from the user utterance. This is likely because the two
passes rely on the OOV model to correctly identify the unknown
word boundaries, and accurately recognize the context in the re-
mainder of the sentence. For System 2, in 12.6% of the sentences,
no OOV word is detected, and in another 13%, no restaurant name
is resolved. Currently, we only add restaurants that match the con-
text (e.g., city name) in the top-choice interpretation chosen by the
NL component. In the future, we will investigate allowing all con-
texts in the � -best interpretations, hopefully increasing the rate at
which restaurant names are correctly resolved.

Also, only when the rest of the sentence has been accurately
recognized will the correct name subset be retrieved. We computed
the concept error rates (CER), based on attribute-value pairs derived
from the meaning representation, and the overall task success (i.e.,
when all the attribute-value pairs are correct). Although System 1
has better CER/WER, it does not outperform on task success. The

reason is that a single mis-recognition on a context parameter gen-
erates larger errors in System 2. If the wrong city is recognized,
there is no chance for recognizing the correct restaurant in the sec-
ond pass, whereas in some cases System 1 ascertains the right name
anyway. But as the context is wrong (i.e., wrong city) for System 1,
it does not achieve task success.

4. Discussion
At a preliminary level, the simulation assessments confirm our hy-
pothesis that dynamically switching vocabulary subsets in lieu of
using the entire vocabulary set of proper names can reduce the lex-
ical confusions in the recognizer, at least for a limited set of sce-
narios. We have shown improvement in recognition performance
for some kinds of queries, but realize that real user data is needed
for further investigations. However, our methodology, in relying
heavily on simulations for development and testing, does allow as-
sessments under controlled conditions.

The dynamic vocabulary implementation is very fast and effi-
cient; thousands of simulated runs have demonstrated that the dy-
namic FST construction and updating can be performed without
latency. Furthermore, we postulate that this framework would be
more robust to performance degradation due to lexical confusions
as the size of the restaurant database increases.

5. Future Work
The system described in this paper has recently been launched and
real-user data collection is already under way. This will be followed
by a full-scale system evaluation. While the current system is eval-
uated on a fixed database of restaurants, the framework is able to
fully support a dynamically decoupled database in the back-end. A
future application will be a system that searches the Web in real-
time to look for data that satisfy user criteria.

In the future, the dynamic vocabulary capability will be ex-
panded with clarification subdialogues to enable users to repeat, or
speak and spell words not previously known to the recognizer [8].

Thus far, the system has been trained on simulated data alone.
As more real user data accumulate, evaluation will compare systems
trained on real user data with a mix of simulated and real data or
simulated data alone.

6. References
[1] Schalkwyk, J., Hetherington, I. L., and Story, E., “Speech Recogni-

tion with Dynamic Grammars Using Finite State Transducers,” Proc.
Eurospeech, Geneva, Switzerland, 2003.

[2] Bazzi, I., and Glass, J., “Learning Units for Domain-Independent Out-
of-Vocabulary Word Modelling,” Proc. Eurospeech, Aalborg, Den-
mark, 2001.

[3] Seneff, S., Wang, C., and Hazen, T. J., “TINA: A natural language
system for spoken language applications,” Computational Linguistics,
vol. 18, no. 1, pp. 61-86, March 1992.

[4] Seneff, S., et al., “Galaxy-II: A reference architecture for conversational
system development,” Proc. ICSLP, Sydney, Australia, 1998.

[5] Chug, G., Wang, C., Seneff, S., Filisko, E., and Tang, M., “Combining
Linguistic Knowledge and Acoustic Information in Automatic Pronun-
ciation Lexicon Generation,” submitted to ICSLP, 2004.

[6] Chung, G., “Developing a Flexible Spoken Dialog System Using Sim-
ulation,” submitted to ACL, Barcelona, Spain, 2004.

[7] The Festival Speech Synthesis System,
http://www.cstr.ed.ac.uk/projects/festival/.

[8] Filisko, E. and Seneff, S., “Error Detection and Recovery in Spoken
Dialogue Systems,” Workshop for Spoken Language Understanding for
Conversational Systems, Boston, MA, 2004.

