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Abstract
This paperdescribespreliminary recognitionexperimentson
PhoneBook[1], acorpusof isolated,telephone-bandwidth,read
wordsfrom a large (almost8,000-word) vocabulary. We have
chosenthis corpusas a testbedfor experimentson the lan-
guagemodel-independentpartsof a segment-basedrecognizer.
We presentresultsshowing that a segment-basedrecognizer
performswell on this task, and that a simple Gaussianmix-
ture phonedurationmodelsignificantlyreducesthe error rate.
We comparecontext-independent,stress-dependent,andword
position-dependentduration modelsand obtain relative error
ratereductionsof up to 12% on the testset. Finally, we make
someobservationsregardingtheeffectsof stressandwordposi-
tion in this isolated-word taskanddiscussour plansfor further
researchusingPhoneBook.

1. Introduction
The work describedin this paperwas motivatedby a desire
to studyaspectsof automaticspeechrecognitionrelatedto the
acoustic-lexical interfaceandsegmentationin a segment-based
recognizer. The PhoneBookdatabase[1], a large-vocabulary
isolated-wordcorpus,seemsparticularlywell-suitedto thistype
of investigation:the isolated-word taskallows us to ignorethe
effectsof a languagemodelandto explorecomputationallyin-
tensive low-level modeling,while the large vocabulary makes
thetasksufficiently challenging.Thispaperdescribesourbase-
line systemandinitial experimentswith durationmodels.

Thefollowing sectionspresentthesegment-basedrecogni-
tion framework andthe interpretationof a durationmodelasa
segmentationprobability; describethePhoneBookcorpus,our
baselinerecognizer, andtheinitial durationmodelswe have in-
vestigated;and interpretour resultsandsuggestfuture direc-
tions.

2. Segment-based recognition framework
We begin by reviewing the probabilistic formulation of the
speechrecognitionproblem, which is used in our segment-
basedrecognizer[2]. We presentthe generalcasein which
an utterancemay containmultiple words,althoughthe exper-
imentswe discussarelimited to an isolated-word task. In the
generalformulation, the goal is to determinethe most likely
string of words �������
	����������� given the setof acoustic
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observations � , that is � � ������������� �"!$#%�'& �)( , whereW
rangesoverall possiblewordstrings.Sinceasinglewordstring
canhave multiple realizationsasstringsof sub-word units(e.g.
phones)*+�-,.	�������/,10 with differentsegmentations2 , this
becomes

� � �3�4���5�����6 78:9<; = !$#%�>��*?�@2A& �)(@�
where * rangesover all possiblepronunciationsof the word
string � and 2 rangesover all possiblesegmentations(i.e. lo-
cationsof phoneboundaries,or any otherdefinition of a seg-
mentation). We then make the conventionalassumptionthat,
givena word string � , thereexist both anoptimalpronuncia-
tion * � andanoptimalsegmentation2 � , whicharemuchmore
likely thanany other #B*5��2�( combination,so that we may re-
placethesummationby amaximization:� � � �C* � �@2 � �
�3�����D���4�6 ; 9<; = !$#%�>�@*5�@2A& �)(@
Applying Bayes’rule severaltimes,wecanrewrite this as:� � � �C* � �@2 � �E�

�����F�����6 ; 9<; = !$#G�H& �I��*?��2J(K!$#%2A& *5�@��(K!$#B*L& ��(K!$#%��(@�
wherethefirst termcorrespondsto theacousticmodel,thesec-
ondto thesegmentationprobability, thethird to thepronuncia-
tion model,andthelastto thelanguagemodel.

In a typical frame-basedrecognizer, an HMM is usedto
jointly model the acousticand segmentationterms(the latter
being representedby the statetransitionprobabilities). In a
segment-basedapproach,on the other hand,the acousticand
segmentationtermsaremodeledseparately. Whenno explicit
modelis usedfor the !$#%2A& *?����( term, it is in effect assumed
to bea constantfor any allowablesegmentationof * andzero
for any othersegmentation.

The segmentationterm, however, can be interpretedas a
durationmodelasfollows. Definea segmentationto be a list
of the phoneboundariesin that segmentation. That is, 2M�N 	 ������ N 0 denotesthat the first phoneextendsfrom time O toN 	 , the secondextendsfrom

N 	 to
N/P

, andso on until the Q�RTS
phone.Thisis equivalentto thedurationof thefirst phonebeingN 	 , thatof thesecondbeing

N PVU N 	 , andsoon. UsingthenotationW�X to denotetheevent“segment W hasdurationY ”, wehave that

!$#%2Z� N 	�����[� N 0\& *5�@��(
� !$# W R^]	 � W RT_4`aRG]P ����[� W R^bc`aR^b d ]0 & *?�C��(
� 0e

fhg 	 !$# W R^i^`1R^i d ]f & *5�@�>� W RG]	 � W RT_4`aRG]P ����c� W R^i d ] `1R^i d _f ` 	 (@
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In the above we have consideredonly the casein which the
numberof segmentsin thesegmentationis equalto thenumber
of phones;for othercasestheprobabilityis zero(assumingthat
phonesarenot permittedto have zero duration). If we make
theassumptionthat,giventheunit string,eachphone’sduration
is independentof thedurationsof theotherphones,thecondi-
tioningstatementin thelastexpressionbecomes#B*?�@�j( alone.
This assumptionroughlycorrespondsto ignoringtheeffectsof
speakingrate.

Fromthisgeneraldurationmodel,wecanobtainsomesim-
plermodelsby makingvariousassumptions.For example,if we
assumethateachphone’s durationdependsonly on thephone’s
identityandnotontheidentitiesof otherphonesor ontheword
string,wehave thecontext-independentmodel

!$#%2A& *?����(k� 0e
fhg 	 !$# W R^iG`1R^i d ]f & , f (@

Alternately, assumingthatthedependenceon * and � is cap-
turedsolelyby thecurrentphone’s stressand/orpositionwithin
the word or utterance,in addition to the phone’s identity, we
have

!$#%2A& *5�@��(k� 0e
fhg 	 !$# W R^i%`aR^i d ]f & , f � W NKl #^, f (@�^mon W #^, f (�(@�

where W NKl #^, f ( is the stresslevel of , f and man W #^, f ( is some
functionof thepositionof , f within anutterance.Effectssuch
aslengtheningof stressedvowelsandof phrase-finalsegments
are well-known [3] and have beenusedsuccessfullyto pre-
dict phonedurations[4]. We discussthe useof suchcontext-
dependentdurationmodels,aswell asof acontext-independent
one,in Section4.2.

The above interpretationof the durationmodel is similar
to that in [5]. Durationmodelswith varioustypesof distribu-
tion have beenattempted(e.g. Poisson[6], Gamma[7], and
Gaussianmixtures[8]) andusedin both frame-based[5] and
segment-based[9, 10] recognizers.However, durationmodels
areparticularlynaturalto incorporatein a segment-basedrec-
ognizer, sincethe searchinherentlyconsidersentiresegments
andthereforerequiresno modificationotherthananadditional
scoreon eachsegment.

3. The PhoneBook database
ThePhoneBookdatabasecontainsapproximately92,000utter-
ancesof isolatedwordsreadover thephoneby native speakers
of variousdialectsof AmericanEnglish. The vocabulary con-
sistsof almost8,000wordsof varyinglengths(e.g.aced,acous-
tically, winfrey) designedto cover asmany phonemiccontexts
aspossible.Theinclusionof many confusableword pairs(e.g.
scheduled/schedules,bulls/bolts) makes the task challenging,
especiallywhenrecognizingwith theentirevocabulary. Phone-
Bookhastypically beenusedfor investigationseitherinto tasks
wherethetrainingandtestvocabulariesaredifferent[11] or into
new typesof acousticmodelingandrepresentation(e.g. mod-
eling additionaldependenciesin [12] and[13], andarticulatory
statemodelsin [14]).

We usethe samebreakdown of the databaseinto training,
development,andtestsetsasdefinedin [11]. Thereis no over-
lapbetweenspeakersorwordsin thedifferentsets.Twotraining
setsaredefined;the“small” trainingsetcontainsabout20,000
utterancesandthe“large” setcontainsabout80,000utterances.
The developmentand testsetscontainabout7,000utterances

each.Most publishedresultsinvolve trainingon the20k train-
ing setandclassifyingeachword in thetestor developmentset
from amonga list of wordsrangingin sizebetweenabout75
andabout600. We have chosento train on the80k trainingset
in orderto gainmorefreedomto train complex models,andto
testwith the full (8,000-word) vocabulary in orderto increase
the difficulty of the task. For comparisonwith the literature,
however, we alsoreportour baselineresultswhentraining on
the20k trainingsetandtestingwith a600-word vocabulary.

4. Experiments
4.1. Baseline recognizer

The baselinerecognizerusesthe SUMMIT segment-basedsys-
tem [2], [15]. It begins with a segmentationstepthat hypoth-
esizeslandmarks,or locationsin the waveform at which pho-
netic boundariesare likely to occur, usingan acousticchange
criterion [10]. This stepcreatesa graphof allowablesegmen-
tationsand thereforelimits the numberof segmentationsthat
mustbeconsideredin thesearch.Landmarkfeatures,consisting
of MFCC averagesover severalregionsaroundeachlandmark,
are thenextractedandscoredwith phoneticdiphoneacoustic
models,asin [15]. A diphonecancorrespondto a landmarkat
theboundarybetweentwo phonesor to a phone-internalland-
markdetectedby thesegmentationalgorithm.Segmentmodels,
which modeltheregionsbetweenlandmarks,canalsobeused
in SUMMIT, but we do not currentlyusethemfor PhoneBook
experiments.

Baseformsfor eachwordaretakenfrom thePronlex dictio-
nary [16] whenever possible,andfrom thedictionaryprovided
with PhoneBookfor wordsnotappearingin Pronlex. Pronunci-
ationrulessuchasflapping,palatalization,etc.arethenapplied
andstressis removed to obtaina pronunciationgraphfor each
word usinga detailedsetof 69 segmentlabels(66 phonesplus
silencemodels).Wecurrentlyassumethatall resultingpronun-
ciationsof a word areequallylikely. Sincethetaskis isolated-
wordandeachwordis equallylikely, thelanguagemodelis also
trivial.

The SUMMIT recognizerusesa Viterbi training paradigm,
which wasseededwith phoneticalignmentsobtainedusingex-
isting telephone-speechacousticmodels from conversational
domains[15]. Sincetheamountof trainingdatais insufficient
to train a modelfor eachdiphoneoccurringin the vocabulary,
thediphoneswerethenclusteredusingtop-down decisiontree-
basedclusteringon thePhoneBooktrainingdata.We notethat
usingtop-down clusteringis importantin PhoneBook,asin any
domainin which the training and testvocabulariesarediffer-
ent;bottom-upclusteringwouldbeunableto assigna classto a
diphoneappearingin a testsetbut not in thetrainingset.

Thefirst line of Table1 shows theerrorratesobtainedwith
this baselinesystemon the 600- and 8,000-word taskswhen
training on the 20k training set. We note that this recognizer
achieves a lower error rate thanany that we have seenin the
literatureonthe600-word task.Table2 showspublishedresults
on the600-word taskusingthe20k trainingset.

Having establishedthat the recognizerperformscompeti-
tively, we switchedto trainingon the80k trainingsetandtest-
ing on the8,000-word task. At this point, we alsoswitchedto
a phonesetandpronunciationgraphswith binaryvowel stress
information (where“stressed”vowels are thosewith primary
stressand“unstressed”vowels eitherarereducedor have sec-
ondarystress),aswell astagsindicatingword-finalvowels,for
subsequentexperimentswith context-dependentdurationmod-
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Training set # params 600-wd ER 8,000-wd ER
20k 627k 3.6 13.6
80k 1.55M 2.3 9.9

Table 1: Error rates (ER, in %) of the baselinerecognizer on the
PhoneBooktestset.

Reference Description, # params ER
Dupontetal. [11] hybridHMM/ANN, 166k 5.3
Bilmes[13] HMM or DynamicBayesian 5.6

Multinet, p 200k
Richardsonetal. [14] HMM + Hidden 4.17

ArticulatorMM, 458k

Table 2: Publishedtest set error rates(ER, in %) on the 600-word
PhoneBooktaskusingthe20ktraining set.

els. Thepronunciationrulesanddiphonemodels,however, re-
mainthesame;thestressedandunstressed,andword-finaland
non-final,versionsof the samevowel areclassedin the same
diphoneclassandaresubjectto thesamerulesasbefore. The
performanceof this recognizeris shown in the secondline of
Table1.

4.2. Duration models

While examiningthe pathschosenby the baselinerecognizer,
we noted that many misrecognizedutteranceshad unusually
long or short phonesand conjecturedthat a duration model
would behelpful. Figures1 and2 show two exampledecoded
utterancesdemonstratingthe typesof durationerrorsthat we
have noticedin thebaselinerecognizer.

We useda Gaussianmixturemodelfor thephoneduration
density, sincethis modelis simpleandversatile;a discretedis-
tribution is inappropriatein our casebecausethesegmentation
algorithmdoesnot producepurelydiscretedurationvalues.In
fact,wemodeledthelog durationratherthanthedurationitself,
sincethe former is moreconducive to modelingwith a Gaus-
sianmixturedistribution. Thenumberof Gaussianspermodel
was determinedfor eachclassbasedon the numberof train-
ing examples,up to a certainmaximumnumberof Gaussians.
Fromqualitativeobservationof thedurationdistributionsin the
training set, we set the maximumnumberof Gaussiansto 5,
in orderto allow a goodfit to the datawhile avoiding overfit-
ting. We also found it beneficialto scalethe durationscores
relative to the diphonescoresto accountfor the differencein
their scales,aswell asto addanoffset to eachsegment’s score
to accountfor therecognizer’s preferencefor longeror shorter
phonesequences;thevaluesof theseparametersweresetbased
ondevelopmentsetperformance.

We beganwith a context-independentdurationmodel,that
is, !$# W R i `1R i d ]f & *?����(q�r!$# W R i `1R i d ]f & , f ( . In addition, we
alsotraineddurationmodelswith threekindsof context depen-
dence.In thefirst condition(the“stress-dependent”condition),
separatemodelsare trainedfor stressedand unstressedvow-
els. However, while stressedvowels usuallytendto be longer
thanunstressedones,we found that for somevowel classesin
thePhoneBooktrainingset,theunstressedversiontendsto be
longer than the stressedone. This is lesssurprisingoncewe
realizethat,in this trainingset,unstressedvowelsareabout3.5
timesmorelikely to be word-final thantheir stressedcounter-
parts; and sincethe utterancesare isolatedwords, word-final

Figure1: Spectrogram of an utteranceincorrectly recognizedby the
baselinerecognizerbut correctly recognizedwhena duration modelis
added. The top transcriptionshowsthe hypothesisproducedby the
baselinerecognizer, correspondingto the word “fr ozen”; notetheun-
usuallyshort [r] ( p 15 ms)andunusuallylong syllabic [n], [en] ( p 380
ms). Thebottomtranscriptionshowsthe hypothesisproducedwith a
duration model,correspondingto thecorrectword “ozone” (the label
[ow f] indicatesa word-final [ow]).

Figure2: Spectrogram of an utteranceincorrectly recognizedby the
baselinerecognizerbut correctly recognizedwhena duration modelis
added. The top transcriptionshowsthe hypothesisproducedby the
baselinerecognizer, correspondingto theword “mules”; notethelong
[y] ( p 170ms)andshort [uw+ f] (stressed[uw] in word-final position,p 50ms).Thebottomtranscriptionshowsthehypothesisproducedwith
a durationmodel,correspondingto thecorrectword “r eels”.

vowels areactuallysubjectto utterance-final lengthening.We
thereforetraineda secondsetof context-dependentmodelsthat
take into accountwhetheror not a vowel is word-final. Finally,
we traineda setof modelswith both stressandword-position
dependence.

Table3 summarizesthe resultsof usingall four duration
modelson the developmentand testsets. All of the duration
modelsproducea statisticallysignificantreductionin errorrate
over thebaseline(usinga McNemartestat a significancelevel
of 0.01). On thedevelopmentset,thefour durationmodelsare
statisticallyequivalent. On the testset, the modelswith posi-
tion dependenceandthosewith bothstressandpositiondepen-
denceperformsignificantlybetterthanthecontext-independent
andstress-onlymodels.The testsetresults,therefore,support
our hypothesisthatword-finaleffectstakenalonearemoreim-
portantthanstressin modelingvowel durationin PhoneBook,
althoughthedevelopmentsetresultsarelesssupportive of this
claim. Thebest-performingmodelsachieve a 12% relative er-
ror rate reductionon the test set. It is noteworthy that all of
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Model # params dev ER test ER

baseline 1.55M 10.5 9.9
context-ind’t dur + 954 9.4 9.2
stress-dep’t dur + 1179 9.4 9.1
position-dep’t dur + 1179 9.3 8.7
stress-& position-dep’t dur + 1614 9.4 8.7

Table3: Effectof duration modelson theerror ratesfor thedevelop-
mentandtestsets.Thenumberof parameters for each duration model
refers to theadditionalparameters neededby thatmodel.

thesegainsareobtainedwith averysmallcostin thenumberof
additionalparametersto beestimated,asshown in thetable.

Figures1 and 2, showing the utterancesthat were previ-
ouslypoorlydecodedwith thebaselinerecognizer, alsoinclude
thecorrespondinghypotheseswhenusinga durationmodel(in
this case,the context-independentmodel). In both cases,the
recognizerusingthedurationmodelis ableto correctlydecode
theutterances.

5. Future work

Theresultswe have presentedrepresentour preliminaryinves-
tigation into the PhoneBookdatabaseas a testbedfor exper-
imentswith segment-basedrecognition. Theseinitial results
demonstrateboth the effectivenessof the segment-basedap-
proachon the PhoneBooktaskandthe usefulnessandeaseof
incorporatingan explicit durationmodel into the recognition
search.We plan to continueto usePhoneBookto explore du-
rationmodelingandotheraspectsof recognitionon theacous-
tic/lexical level. Examplesof additionalissueswewould like to
exploreusingPhoneBookincludearticulatoryfeatureandpho-
neticclassrepresentationsfor lexical access.

In theareaof durationmodeling,wehavenot takeninto ac-
countmany factorsthatcancontributeto theperformanceof the
models,suchasspeakingratevariations,phoneticcontext, and
position effectsother than utterance-finallengthening. While
the modelswe have usedthus far producesignificantperfor-
mancegainsataverysmallcost,weareinterestedin investigat-
ing thebenefitsof amorerealisticmodelof duration.In orderto
bettermodelcontextualeffects,weplanto incorporateahierar-
chicaldurationmodelpreviously developedin our group[9] as
a post-processingstep.We have foundthatonly a very shallows

-bestlist wouldberequiredto ensurethatthecorrecthypoth-
esisis present.Specifically, for thebaselinerecognizer, almost
half of theerrorson thedevelopmentsetcorrespondto thecor-
rect hypothesisbeingranked second(4.7%out of a total error
rateof 10.5%),andan

s
-bestlist with 10 hypothesescontains

thecorrecthypothesis98.7%of thetime. Whenusingacontext-
independentdurationmodel,errorsin whichthecorrecthypoth-
esisis ranked secondaccountfor 4.3%of the9.4%error rate,
and the correcthypothesisis in the 10-bestlist 99.0%of the
time. Thismakesa rescoringapproachattractive for this task.

Finally, we have observed that the distributions of phone
durationscan be erratic, due to both the inherentlyquantized
natureof framedurationsandcertainintrinsiccharacteristicsof
thesegmentationalgorithm.This suggeststhata differentkind
of distribution,possiblyasemi-discreteone,maybepreferable.
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