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Abstract

This paper describes the dialogue module of the
Mercury system, which has been under development
over the past year or two. Mercury provides tele-
phone access to an on-line ight database, and allows
users to plan and price itineraries between major air-
ports worldwide. The main focus of this paper is the
dialogue control strategy, which is based on a set of
ordered rules as a mechanism to manage complex di-
alogue interactions. The paper also describes the in-
teractions between the dialogue component and the
other servers of the system, mediated via a central
hub. We evaluated the system on 49 dialogues from
users booking real ights, and report on a number of
quantitative measures of the dialogue interaction.

1 Introduction

Dialogue modeling is a critical and challenging as-
pect of conversational systems, particularly when
users are permitted exibility with regard to de�n-
ing the constraints of the task. For systems that
adopt a strict system-initiated approach, it is fea-
sible to de�ne a set of states and state transitions
depending on the usually small number of possible
user actions at each state. However, if the user is
permitted to say anything within the scope of the
recognizer at any time, such a �nite-state solution
becomes unwieldy. We are interested in the devel-
opment of mixed-initiative systems, where the sys-
tem may make speci�c requests or suggestions, but
the user is not required to be compliant. Instead
of a �nite state dialogue model, we choose to de-
compose dialogue state into a set of state variables.
The activities for a given turn typically involve the
sequential execution of a number of specialized rou-
tines, each of which performs a speci�c part of the
dialogue requirements and alters the state variables
in particular ways. To determine which of the op-
erations should be performed, the system consults a
dialogue control table, which is speci�ed in a simple
scripting language.
This paper describes experiments with using this

approach to dialogue modeling in the context of our
Mercury ight reservation system. Mercury allows

users to plan air travel between 226 cities worldwide.
Following log-on, the user interacts with the system
to select the ights of their trip. When the ight
plan is completed, the system takes the initiative
to o�er to price and email the itinerary. Finally,
the system asks the user a few questions to help
determine user satisfaction.
The overall system makes use of the galaxy ar-

chitecture [Sene�et al (1999)], which consists of a
number of specialized servers that communicate with
one another via a central programmable hub. An au-
dio server captures the user's speech via a Dialogic
board, and transmits the waveform to the speech
recognizer [Glass et al (1996)]. The language under-
standing component [Sene� (1992)] parses a word
graph produced by the recognizer and delivers a se-
mantic frame, encoding the meaning of the utter-
ance, to the discourse component. The output of
the discourse component [Sene� (1996)] is the frame-
in-context, which is transformed into a attened E-
form (electronic form) by the generation server. This
E-form is delivered to the turn manager, and pro-
vides the initial settings of the dialogue state.
The turn manager consults the dialogue control

table to decide which operations to perform, and
typically engages in a module-to-module subdia-
logue to retrieve tables from the database. It pre-
pares a response frame, which may or may not in-
clude tabular entries. The response frame is sent
to the generation component [Glass (1994)] which
transforms it in parallel into both a text string and
an annotated string that speci�es the input controls
for the speech synthesizer. Finally, the speech syn-
thesizer transmits a waveform to the audio server
which then relays the spoken response to the user
over the telephone. The entire dialogue is recorded
in detail in a log �le for later examination.

2 Knowledge Representations

Mercury's dialogue manager manipulates linguistic
and world knowledge represented in the form of se-
mantic frames. At each turn it begins with an
E-form representing the constraints of the current
query as a set of (key: value) pairs. This E-form pro-



U: John Doe
S: Please speak the month and day you registered as your password, as in, may �rst.
U: april �rst
S: Welcome John. You have successfully logged onto Mercury. How may I help you?
U: i want to travel to washington dulles on november fourth
S: From Boston to Washington Dulles on November 4. Can you provide the approximate

departure time or airline preference?
U: i need to arrive at around nine a m
I: Okay. Flights from Boston to Washington Dulles arriving at 9:00 am on November 4.

One moment please.
S: The best matching ight is a U S Airways ight arriving at 8:59 a.m. I also have a United

ight arriving at 8:36 a.m.
U: what time does the united ight leave
S: United ight 1819 departs at 7:00 am from Boston. Shall I book this ight for you?
U: yes please
S: United ight 1819 has been added to your itinerary. You depart Boston at 7:00 am and arrive

in Washington Dulles at 8:36 am. Where would you like to go next?
U: i would like to return to boston
S: What date will you be returning on?
U: the same day
I: Okay. United ights from Washington Dulles to Boston on November 4. One moment please.
S: Can you provide a departure or arrival time? The earliest nonstop leaves at 9:30 a.m.

and arrives at 10:57 a.m.
U: i would like to leave after three thirty
S: The best matching ight is a United ight departing at 4:30 p.m. I also have a United ight

departing at 5:30 p.m.
U: i will take the �rst one
S: United ight 1278 has been added to your itinerary. You depart Washington Dulles at 4:30

pm and arrive in Boston at 6:07 pm. Shall I price your itinerary?
U: yes please
I: Pricing your itinerary will take a while. In the meantime, I'll summarize your itinerary for you.

on November 4, you depart on United ight 1819 from Boston at 7:00 am and arrive in
Washington Dulles at 8:36 am. From there, you depart on United ight 1278 at 4:30 pm
and arrive in Boston at 6:07 pm.

S: The price for your itinerary is $249.00. Shall I email your itinerary to you?
U: yes
S: Your itinerary has been emailed. Is there something else I can do for you?
U: no thank you
S: Thank you for calling! Have a nice day!

Table 1: Example dialogue between a user and the system involving a real trip. \U" denotes a user utterance,
\S" a system utterance, and \I" an intermediate system response spoken prior to database retrieval.

vides the initial values in the dialogue state, which
evolves over the course of the turn as rules are exe-
cuted.

In addition to the dialogue state, Mercury also
makes use of several other internal representations
which retain state. These are packaged up into
a turn-manager history frame which is passed to
the hub for safe-keeping at the end of each turn,
and returned with each subsequent turn. The user
model contains a record of the system's current be-
lief about the state of the user's ight plan. For
example, if the user's �rst query were \I want to go
to Denver next Friday morning, returning the fol-

lowing Wednesday," the system would record that
this is a round trip ight and would save the return
date (unresolved, in case there was a recognition er-
ror on the forward leg date) in the user model. It
would retrieve from the user model, as the forward
leg source, the default value provided by the user at
enrollment. Thus the user model retains both the
initial user preferences and all of the details of the
current ight plan as they become available. The
system also retains internally a list of all the ights
that matched the user's constraint speci�cations, as
well as a list of the subset of the ights that it has
spoken about (e.g., the nonstop ights or the earliest
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Figure 1: An (incomplete) state diagram for the example system described in the text.

ight). These ights become available for reference
in subsequent queries such as \book the third one,"
or \where does the united ight stop?".
Whenever the system needs to go to the database,

it provides an intermediate reply frame which serves
both to ask the user for patience and to con�rm a
consistent shared model of the dialogue history. The
system's �nal response is also a frame, and it often
contains a list of ights to be read back to the user.
In other cases, it may be a yes-no question as in
\Shall I email your itinerary to you?" The latter
case also necessitates sending both to the discourse
component a system-initiative context for yes/no re-
sponses, and to the language understanding compo-
nent a dialogue context �lter that favors con�rma-
tions and denials in the N-best selection. A similar
process takes place when the system prompts for in-
formation such as a date or a departure city.
Table 1 shows a dialogue between a user and the

system involving a real trip between Boston and
Washington D.C. The name and password informa-
tion have been omitted for privacy reasons. In the
�gure, \U" stands for \user", \S" for system, and
\I" for intermediate response.

3 Dialogue Management Strategies

A �nite state network is a convenient way to formu-
late dialogue states, as long as the system is able to
maintain strong control over the order in which slots
are �lled, and especially when slots are �lled one at
a time. However, if the user is permitted the exi-
bility to �ll slots in any order, and to �ll more than
one slot in a single turn, then it becomes diÆcult
and ineÆcient to de�ne a �nite state network that
covers the entire space of possibilities.
A �nite state solution for a simple dialogue exam-

!source �� > prompt source
!destination �� > prompt destination
!airline �� > prompt airline
!date �� > prompt date
nprompts > 1 �� > mark multiple
nprompts = 0 �� > retrieve ights

Figure 2: A dialogue control table corresponding to
the state diagram in Figure 2.

ple is given in Figure 1. Here, we assume that the
user can �ll four slots (source, destination, date, and
airline) and that all four must be �lled before the
system can retrieve ights. The slots can be �lled in
any order, and the user can �ll any number of slots
in each turn. For notational convenience, we repre-
sent the states �lled/un�lled by 1/0, and we order
the �elds as [source, destination, date, airline], such
that state \1101" says that only date is missing. At
each state the system prompts the user for all miss-
ing slots. Thus, state 1000 would speak, \Can you
provide one or more of destination, date, and air-
line?" If the user provides more than a single �eld
in a given turn, the system advances by more than
one state in the state diagram. To fully specify all
possibilities, even for this simple example, requires
a large number of states in the state diagram.

Figure 2 shows a set of ordered rules which achieve
the same goals as the state diagram but with a
greatly simpli�ed dialogue control speci�cation. In
this case, state is encoded implicitly as a bit map
corresponding to the �lled/un�lled values of the four
variables. The notation \!" stands for \NOT,"
meaning that this variable is not yet �lled. Follow-
ing the arrow is the name of the operation to be



clause request keypad �! keypad input
week j day j rel date �! resolve relative date
ight number & !airline �! need airline
clause price & topic itinerary & truth value deny �! dont price itinerary
clause book & num found =1 �! add ight to itinerary
num nonstops > 1 & num nonstops < 4 & arrival time �! speak three arrivals

Figure 3: Selected rules from the Mercury dialogue control table. \&" stands for \AND" and \j" stands for
\OR".

performed when the conditions are met. Each op-
eration is usually a speci�c function, and is free to
augment the variable space by either altering the val-
ues of pre-existing variables or introducing new vari-
ables. In our simple example the four prompt opera-
tions simply add their respective variables to the re-
sponse frame and increment the variable \nprompt."
The �nal function \mark multiple" �res only if more
than one of the preceding functions have �red. Its
action is to insert \one or more of" into the response.
The �nal \retrieve" operation only �res if none of the
preceding operations �red. It is signi�cant that state
is dispersed not only over the variables but also over
the operations. Thus, any single prompt state of
the state transition matrix would involve up to two
operations in the dialogue control table, and, con-
versely, the \mark multiple" operation is associated
with several states.

In addition to possibly altering the values of vari-
ables in the dialogue state, operations also have the
responsibility to return, upon completion, one of
three \move" states. The majority of the operations
return the state \continue," which means simply
to continue execution just beyond the rule that just
�red. The two other possibilities are \stop," i.e.,
exit from the dialogue control table, and \restart"
which means to return to the top of the set of
dialogue rules and start over. An (optional) dis-
tinguished operation, which handles activities that
should occur routinely at every turn, is executed
upon exiting the dialogue control process. The tests
on variables can be binary, arithmetic, or string
matching on values.

Our Mercury system makes use of this \ordered
rules" strategy for dialogue control. However, the
rules are dealing with a great deal more complexity
than simply deciding what prompts to issue when
certain slots are un�lled. There are currently a total
of over 200 rules in Mercury's dialogue control table.
These rules can be grouped into several distinct cat-
egories. Only nine of the rules involve prompts for
missing information. Another nine are involved with
logging into the system, i.e., acquiring the name and
the password, which may have to be entered using
the telephone keypad, either upon user request or
as a consequence of recognition failure. Eleven rules
are concerned with meta-level interactions such as

apologies for missing services (no ight status in-
formation available), and requests for help or rep-
etition. Several rules have to do with determining
whether the current request plausibly involves a ref-
erence to a ight in a pre-existing ight list. This
could be an obvious reference to the nth ight, or it
could be an inquiry about the \united ight" or the
\nine a.m. ight." Several more rules involve inter-
preting various references to relative dates and/or
times such as \the following Thursday," or \that
same afternoon."

The largest single category concerns preparing the
reply frame, after the database retrieval has already
taken place. Twenty six rules are concerned with
this task, and they are keyed on a combination of the
number and type of ights retrieved and the speci�c
request of the user (e.g., \where do they connect?").
The purpose of these functions is to reduce the num-
ber of database tuples returned for a given query to
a manageable set for a spoken response. This re-
duction is based on a hierarchy of quality measures
for each ight, beginning with any stated or inferred
preference (e.g., a particular airport in the case of
cities with multiple airports, or a particular airline
in the case of a multi-leg booking where one leg has
already been established) and including number of
stops and length of ight. These functions also con-
solidate information about the ights to be spoken,
combining shared attributes. Our ultimate goal is to
produce a response such as \I have found three non-
stop United ights. Flight 100 leaves at 8:45, ight
200 leaves at 9:10, and ight 300 leaves at 9:30."
The dialogue control table facilitates this interac-
tion by enabling the system developer to encode the
constraints of the hierarchy in the rules.

Finally, there are a miscellaneous set of rules that
have to do with updating the user model, prepar-
ing the intermediate reply, pricing or emailing the
itinerary, preparing the database query, �ltering
ights, or updating the itinerary.

Since the operations are general functions, it is up
to the system developer to decide how to parcel up
the computational requirements into the individual
operations. With experience, one acquires a set of
guidelines to help formalize this process. As a gen-
eral rule, it is preferrable to limit the use of nested
function calls. Instead, an operation can set a vari-



WER words/turn total turns total time
11.5% 7 11 229 sec.

Figure 4: Some easily computed statistics on the 36
successful bookings.

able to indicate that another operation needs to be
called, and then the intended subroutine gets pro-
moted to the status of a dialogue control operation.
This has the e�ect of exposing more of the internal
activities of the system to the dialogue control table,
which serves as a very useful outline of system con-
trol ow. Another general policy is that each oper-
ation should be concerned with a single well-de�ned
task, again in order not to conceal complexity.
Figure 3 shows several examples of actual rules in

Mercury's dialogue control table.

4 Data Collection and Evaluation

Mercury �rst became available for data collection
in October '99. Prospective users must �rst enroll
by �lling in a simple form on a Web page, where
they enter, minimally, their name, email address,
and password (a date). Once the user's name has
been added to the recognizer and language under-
standing components, they receive an email mes-
sage informing them of the telephone number. Users
are encouraged to attempt to book real trips. From
late October to early December, we collected 49 dia-
logues involving real ight bookings, and these form
the basis for our evaluation studies.
Overall, 73% of the bookings were successful

(36/49). We used a very strict requirement for suc-
cess. For example, in one dialogue considered un-
successful the system did not know the airline that
the user requested, and so the user compromised and
booked the trip on a di�erent airline. Three of the
failures are due to the user simply hanging up in
frustration, and three others are due to the system
hanging up due to a misrecognized \good-bye." Two
failures were due to user inattentiveness. The user
believed that the trip was correctly booked, but a
misrecognition produced a di�erent itinerary than
the one they were specifying. Finally, four of the
failures involved completely correct bookings, but
the system was unable to follow through with the
pricing and/or emailing of the itinerary. Some of
these involved inadequacies in the dialogue module,
once the user did not provide the expected response
to a system request. There was a striking di�erence
in recognition error between the successful and the
incomplete bookings (11.5% vs 26%WER). A heavy
foreign accent accounted for some of the recognition
problems.
Some easily measurable statistics for the successes

are given in Figure 4. These numbers were computed

IBR: 0 1 2 3 4 total
Nutts: 41 90 55 31 9 226

Figure 5: Distribution of evaluable user utterances
in terms of number of new attributes introduced
with each dialogue turn. IBR = Information Bit
Rate.

on the \core dialogue," de�ned as the interval subse-
quent to logging on and up until the itinerary is fully
speci�ed, but has not yet been priced. On average
users required less than four minutes to complete
the core dialogue, although three outliers took more
than seven minutes.

4.1 Log File Evaluation

We have long been interested in seeking evaluation
metrics that are automatic and that can apply on a
per-utterance basis but evaluate a signi�cant portion
of the system beyond the recognizer. In [Polifroni et
al. (1998)] we proposed an E-form evaluation met-
ric, which compares an E-form obtained by parsing
the original orthography against that obtained by
parsing the selected recognizer hypothesis. We be-
lieve this is a good metric for evaluating how well the
recognizer and parser are doing, but it says nothing
about the discourse and dialogue components.
We recently devised two new evaluation metrics,

which we believe are useful measures for assessing
the performance of the recognizer, parser, discourse,
and dialogue components, collectively. To compute
the measures, we must reprocess the log �le after the
orthographic transcription has been provided for the
user queries. Basically, both the recognizer hypothe-
sis and the original orthography are run through the
system utterance by utterance, with the discourse
and dialogue states being maintained exclusively by
the recognizer branch. For both branches, the E-
form that is produced after the turn manager has �n-
ished processing the query is sent to a special evalu-
ation server. This server maintains a running record
of all the attributes that appear in the orthography
path, comparing them against their counterparts in
the recognizer path.
The two parameters that emerge from comparing

these E-forms we refer to as information bit rate
(IBR) and user frustration (UF). IBR measures the
average number of new attributes introduced per
user query. A subsequent query that reiterates the
same attribute is excluded since it did not intro-
duce any new information. Thus if the user said,
\I want to go from Seattle to Chicago on Decem-
ber 27," and the system misrecognized the date as
\December 22," then a subsequent query, \I said
December 27" would be registered as contributing a
0 count to the IBR parameter. The UF parameter
tabulates how many turns it took, on average, for an



intended attribute to be transmitted successfully to
the system. Thus, in the example above, the source
and destination each took one turn, but the date
took two.
There are some diÆculties with rerunning the di-

alogue at a later time. Both the system and the
database are in a state of ux, and so the dialogue
can become incoherent. For example, in one case the
user said, \Book it," in response to a single ight
being proposed, but due to changes in the ight
schedule, the system proposed three ights in the
rerun and the dialogue became incoherent from that
point on. To help alleviate incoherence, we provide
a mechanism to arti�cially o�set the date, at least
to assure that the dates they have selected haven't
already passed. In spite of the above problems, we
feel that these evaluation metrics show considerable
promise.
In a pilot study, we processed a subset of our data

through this evaluation con�guration. We identi-
�ed a set of 17 attributes that could be monitored.
Five percent of the utterances had orthographies
that failed to parse. These are unevaluable with-
out human reannotation, and are hence eliminated
from the pool in the discussion below, although they
clearly are likely to be very problematic. Figure 5
summarizes the results for information bit rate for
the remainder of the utterances. A surprisingly large
percentage of the utterances introduce no new con-
cepts. Some, but not all, of these are similar to
the date misrecognition example given above. Oth-
ers are cases where the user was confused about
the state of the system's knowledge, and decided to
simply repeat all the preceding constraints just to
make sure. Some are also mis�rings of the endpoint
detector producing content-free utterances such as
\okay." In other cases the user intended an action,
but the system's understanding mechanism was not
sophisticated enough. For example \That's good"
meaning \book it." We were pleased with the per-
centage of sentences that contained more than one
attribute. We believe that a typical directed di-
alogue would have far fewer utterances with more
than one attribute.
Excluding the 5% of utterances whose orthogra-

phy failed to parse, our system achieved a 1.05% user
frustration rate. This means that, on average, one
out of every 20 attributes had to be entered twice.
We were very pleased with this number.

5 Summary and Future Work

This paper described our strategy for dialogue man-
agement in the Mercury system. Overall, we have
found it to be extremely powerful. While the Mer-
cury system is still under active development, we feel
that the anticipated extensions of capability will re-
quire a straightforward process of expansions in the

dialogue control table; i.e., the system has not at-
tained an unmanageable degree of complexity in or-
ganization. We believe that this is a direct conse-
quence of the use of the dialogue control table.
Mercury's turn manager deals with some issues,

such as the interpretation of dates and times, that
are of relevance to many other potential domains.
We envision that at some future time we will have
available a large library of operations of general util-
ity that can be inserted into a new system to greatly
accelerate the time required to bring the new domain
up to full operation.
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